Leveraging Predictive Equivalence in Decision Trees
- URL: http://arxiv.org/abs/2506.14143v1
- Date: Tue, 17 Jun 2025 03:11:30 GMT
- Title: Leveraging Predictive Equivalence in Decision Trees
- Authors: Hayden McTavish, Zachery Boner, Jon Donnelly, Margo Seltzer, Cynthia Rudin,
- Abstract summary: Decision trees are widely used for interpretable machine learning.<n>We present a representation of decision trees that does not exhibit predictive equivalence.<n>We show that decision trees are surprisingly robust to test-time missingness of feature values.
- Score: 15.961209879141066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decision trees are widely used for interpretable machine learning due to their clearly structured reasoning process. However, this structure belies a challenge we refer to as predictive equivalence: a given tree's decision boundary can be represented by many different decision trees. The presence of models with identical decision boundaries but different evaluation processes makes model selection challenging. The models will have different variable importance and behave differently in the presence of missing values, but most optimization procedures will arbitrarily choose one such model to return. We present a boolean logical representation of decision trees that does not exhibit predictive equivalence and is faithful to the underlying decision boundary. We apply our representation to several downstream machine learning tasks. Using our representation, we show that decision trees are surprisingly robust to test-time missingness of feature values; we address predictive equivalence's impact on quantifying variable importance; and we present an algorithm to optimize the cost of reaching predictions.
Related papers
- Learning Decision Trees as Amortized Structure Inference [59.65621207449269]
We propose a hybrid amortized structure inference approach to learn predictive decision tree ensembles given data.<n>We show that our approach, DT-GFN, outperforms state-of-the-art decision tree and deep learning methods on standard classification benchmarks.
arXiv Detail & Related papers (2025-03-10T07:05:07Z) - DeforestVis: Behavior Analysis of Machine Learning Models with Surrogate Decision Stumps [46.58231605323107]
We propose DeforestVis, a visual analytics tool that offers summarization of the behaviour of complex ML models.
DeforestVis helps users to explore the complexity versus fidelity trade-off by incrementally generating more stumps.
We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.
arXiv Detail & Related papers (2023-03-31T21:17:15Z) - On the Pointwise Behavior of Recursive Partitioning and Its Implications
for Heterogeneous Causal Effect Estimation [8.394633341978007]
Decision tree learning is increasingly being used for pointwise inference.
We show that adaptive decision trees can fail to achieve convergence rates of convergence in the norm with non-vanishing probability.
We show that random forests can remedy the situation, turning poor performing trees into nearly optimal procedures.
arXiv Detail & Related papers (2022-11-19T21:28:30Z) - On Uncertainty Estimation by Tree-based Surrogate Models in Sequential
Model-based Optimization [13.52611859628841]
We revisit various ensembles of randomized trees to investigate their behavior in the perspective of prediction uncertainty estimation.
We propose a new way of constructing an ensemble of randomized trees, referred to as BwO forest, where bagging with oversampling is employed to construct bootstrapped samples.
Experimental results demonstrate the validity and good performance of BwO forest over existing tree-based models in various circumstances.
arXiv Detail & Related papers (2022-02-22T04:50:37Z) - Optimal randomized classification trees [0.0]
Classification and Regression Trees (CARTs) are off-the-shelf techniques in modern Statistics and Machine Learning.
CARTs are built by means of a greedy procedure, sequentially deciding the splitting predictor variable(s) and the associated threshold.
This greedy approach trains trees very fast, but, by its nature, their classification accuracy may not be competitive against other state-of-the-art procedures.
arXiv Detail & Related papers (2021-10-19T11:41:12Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - Decision Machines: Congruent Decision Trees [0.0]
We propose Decision Machines, which embed Boolean tests into a binary vector space and represent the tree structure as a matrices.
We explore the congruence of decision trees and attention mechanisms, opening new avenues for optimizing decision trees and potentially enhancing their predictive power.
arXiv Detail & Related papers (2021-01-27T12:23:24Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Nonparametric Variable Screening with Optimal Decision Stumps [19.493449206135296]
We derive finite sample performance guarantees for variable selection in nonparametric models using a single-level CART decision tree.
Unlike previous marginal screening methods that attempt to directly estimate each marginal projection via a truncated basis expansion, the fitted model used here is a simple, parsimonious decision stump.
arXiv Detail & Related papers (2020-11-05T06:56:12Z) - Rectified Decision Trees: Exploring the Landscape of Interpretable and
Effective Machine Learning [66.01622034708319]
We propose a knowledge distillation based decision trees extension, dubbed rectified decision trees (ReDT)
We extend the splitting criteria and the ending condition of the standard decision trees, which allows training with soft labels.
We then train the ReDT based on the soft label distilled from a well-trained teacher model through a novel jackknife-based method.
arXiv Detail & Related papers (2020-08-21T10:45:25Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.