A Variational Information Theoretic Approach to Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2506.14194v1
- Date: Tue, 17 Jun 2025 05:17:36 GMT
- Title: A Variational Information Theoretic Approach to Out-of-Distribution Detection
- Authors: Sudeepta Mondal, Zhuolin Jiang, Ganesh Sundaramoorthi,
- Abstract summary: We present a theory for the construction of out-of-distribution (OOD) detection features for neural networks.<n>Our theory provides a general framework for constructing a variety of new features with clear explainability.
- Score: 6.273781219482655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a theory for the construction of out-of-distribution (OOD) detection features for neural networks. We introduce random features for OOD through a novel information-theoretic loss functional consisting of two terms, the first based on the KL divergence separates resulting in-distribution (ID) and OOD feature distributions and the second term is the Information Bottleneck, which favors compressed features that retain the OOD information. We formulate a variational procedure to optimize the loss and obtain OOD features. Based on assumptions on OOD distributions, one can recover properties of existing OOD features, i.e., shaping functions. Furthermore, we show that our theory can predict a new shaping function that out-performs existing ones on OOD benchmarks. Our theory provides a general framework for constructing a variety of new features with clear explainability.
Related papers
- Advancing Out-of-Distribution Detection via Local Neuroplasticity [60.53625435889467]
This paper presents a novel OOD detection method that leverages the unique local neuroplasticity property of Kolmogorov-Arnold Networks (KANs)<n>Our method compares the activation patterns of a trained KAN against its untrained counterpart to detect OOD samples.<n>We validate our approach on benchmarks from image and medical domains, demonstrating superior performance and robustness compared to state-of-the-art techniques.
arXiv Detail & Related papers (2025-02-20T11:13:41Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
We introduce perturbations of the class projections in the final fully connected layer which creates a richer representation of the input.
We achieve state-of-the-art OOD detection results across multiple benchmarks of the OpenOOD framework.
arXiv Detail & Related papers (2024-05-27T13:38:28Z) - Out-of-distribution detection based on subspace projection of high-dimensional features output by the last convolutional layer [5.902332693463877]
This paper concentrates on the high-dimensional features output by the final convolutional layer, which contain rich image features.
Our key idea is to project these high-dimensional features into two specific feature subspaces, trained with Predefined Evenly-Distribution Class Centroids (PEDCC)-Loss.
Our method requires only the training of the classification network model, eschewing any need for input pre-processing or specific OOD data pre-tuning.
arXiv Detail & Related papers (2024-05-02T18:33:02Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained.
This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available.
arXiv Detail & Related papers (2023-11-14T08:05:02Z) - Understanding and Improving Feature Learning for Out-of-Distribution
Generalization [41.06375309780553]
We propose Feature Augmented Training (FeAT) to enforce the model to learn richer features ready for OOD generalization.
FeAT iteratively augments the model to learn new features while retaining the already learned features.
Experiments show that FeAT effectively learns richer features thus boosting the performance of various OOD objectives.
arXiv Detail & Related papers (2023-04-22T05:57:00Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
We introduce a new aspect for analyzing the difference in model outputs between in-distribution data and OOD data.
We propose a novel method, Leveraging Important Neurons (LINe), for post-hoc Out of distribution detection.
arXiv Detail & Related papers (2023-03-24T13:49:05Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
Outlier exposure (OE) is powerful in out-of-distribution (OOD) detection.
We propose a novel OE-based approach that makes the model perform well for unseen OOD situations.
arXiv Detail & Related papers (2023-03-09T04:36:38Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Exploring Optimal Substructure for Out-of-distribution Generalization
via Feature-targeted Model Pruning [23.938392334438582]
We propose a novel Spurious Feature-targeted model Pruning framework, dubbed SFP, to automatically explore invariant substructures.
SFP can significantly outperform both structure-based and non-structure OOD generalization SOTAs, with accuracy improvement up to 4.72% and 23.35%, respectively.
arXiv Detail & Related papers (2022-12-19T13:51:06Z) - Exploring Covariate and Concept Shift for Detection and Calibration of
Out-of-Distribution Data [77.27338842609153]
characterization reveals that sensitivity to each type of shift is important to the detection and confidence calibration of OOD data.
We propose a geometrically-inspired method to improve OOD detection under both shifts with only in-distribution data.
We are the first to propose a method that works well across both OOD detection and calibration and under different types of shifts.
arXiv Detail & Related papers (2021-10-28T15:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.