AMPLIFY: Actionless Motion Priors for Robot Learning from Videos
- URL: http://arxiv.org/abs/2506.14198v1
- Date: Tue, 17 Jun 2025 05:31:42 GMT
- Title: AMPLIFY: Actionless Motion Priors for Robot Learning from Videos
- Authors: Jeremy A. Collins, LorĂ¡nd Cheng, Kunal Aneja, Albert Wilcox, Benjamin Joffe, Animesh Garg,
- Abstract summary: We introduce AMPLIFY, a novel framework that leverages large-scale video data.<n>We train a forward dynamics model on abundant action-free videos and an inverse dynamics model on a limited set of action-labeled examples.<n>In downstream policy learning, our dynamics predictions enable a 1.2-2.2x improvement in low-data regimes, a 1.4x average improvement by learning from action-free human videos, and the first generalization to LIBERO tasks from zero in-distribution action data.
- Score: 29.799207502031496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action-labeled data for robotics is scarce and expensive, limiting the generalization of learned policies. In contrast, vast amounts of action-free video data are readily available, but translating these observations into effective policies remains a challenge. We introduce AMPLIFY, a novel framework that leverages large-scale video data by encoding visual dynamics into compact, discrete motion tokens derived from keypoint trajectories. Our modular approach separates visual motion prediction from action inference, decoupling the challenges of learning what motion defines a task from how robots can perform it. We train a forward dynamics model on abundant action-free videos and an inverse dynamics model on a limited set of action-labeled examples, allowing for independent scaling. Extensive evaluations demonstrate that the learned dynamics are both accurate, achieving up to 3.7x better MSE and over 2.5x better pixel prediction accuracy compared to prior approaches, and broadly useful. In downstream policy learning, our dynamics predictions enable a 1.2-2.2x improvement in low-data regimes, a 1.4x average improvement by learning from action-free human videos, and the first generalization to LIBERO tasks from zero in-distribution action data. Beyond robotic control, we find the dynamics learned by AMPLIFY to be a versatile latent world model, enhancing video prediction quality. Our results present a novel paradigm leveraging heterogeneous data sources to build efficient, generalizable world models. More information can be found at https://amplify-robotics.github.io/.
Related papers
- Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos [66.62109400603394]
We introduce Being-H0, a dexterous Vision-Language-Action model trained on large-scale human videos.<n>Our approach centers on physical instruction tuning, a novel training paradigm that combines large-scale VLA pretraining from human videos, physical space alignment for 3D reasoning, and post-training adaptation for robotic tasks.<n>We empirically show the excellence of Being-H0 in hand motion generation and instruction following, and it also scales well with model and data sizes.
arXiv Detail & Related papers (2025-07-21T13:19:09Z) - Vidar: Embodied Video Diffusion Model for Generalist Bimanual Manipulation [21.424029706788883]
We introduce Video Diffusion for Action Reasoning (Vidar)<n>We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms.<n>With only 20 minutes of human demonstrations on an unseen robot platform, Vidar generalizes to unseen tasks and backgrounds with strong semantic understanding.
arXiv Detail & Related papers (2025-07-17T08:31:55Z) - CoMo: Learning Continuous Latent Motion from Internet Videos for Scalable Robot Learning [47.195002937893115]
CoMo aims to learn more informative continuous motion representations from diverse, internet-scale videos.<n>We introduce two new metrics for more robustly and affordably evaluating motion and guiding motion learning methods.<n>CoMo exhibits strong zero-shot generalization, enabling it to generate continuous pseudo actions for previously unseen video domains.
arXiv Detail & Related papers (2025-05-22T17:58:27Z) - Unified World Models: Coupling Video and Action Diffusion for Pretraining on Large Robotic Datasets [7.667819384855409]
We present Unified World Models (UWM), a framework that allows for leveraging both video and action data for policy learning.<n>By controlling each diffusion timestep, UWM can flexibly represent a policy, a forward dynamics, an inverse dynamics, and a video generator.<n>Our results suggest that UWM offers a promising step toward harnessing large, heterogeneous datasets for scalable robot learning.
arXiv Detail & Related papers (2025-04-03T17:38:59Z) - Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.<n>To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.<n> Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidMan is a novel framework that employs a two-stage training mechanism to enhance stability and improve data utilization efficiency.
Our framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset.
arXiv Detail & Related papers (2024-11-14T03:13:26Z) - Latent Action Pretraining from Videos [156.88613023078778]
We introduce Latent Action Pretraining for general Action models (LAPA)<n>LAPA is an unsupervised method for pretraining Vision-Language-Action (VLA) models without ground-truth robot action labels.<n>We propose a method to learn from internet-scale videos that do not have robot action labels.
arXiv Detail & Related papers (2024-10-15T16:28:09Z) - Any-point Trajectory Modeling for Policy Learning [64.23861308947852]
We introduce Any-point Trajectory Modeling (ATM) to predict future trajectories of arbitrary points within a video frame.
ATM outperforms strong video pre-training baselines by 80% on average.
We show effective transfer learning of manipulation skills from human videos and videos from a different robot morphology.
arXiv Detail & Related papers (2023-12-28T23:34:43Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDAL is a dynamic online adaptive learning scheme for instrument segmentation in robot-assisted surgery.
It learns the general knowledge of instruments and the fast adaptation ability through the video-specific meta-learning paradigm.
It outperforms other state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2021-03-24T05:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.