Vidar: Embodied Video Diffusion Model for Generalist Bimanual Manipulation
- URL: http://arxiv.org/abs/2507.12898v2
- Date: Sun, 27 Jul 2025 13:48:18 GMT
- Title: Vidar: Embodied Video Diffusion Model for Generalist Bimanual Manipulation
- Authors: Yao Feng, Hengkai Tan, Xinyi Mao, Guodong Liu, Shuhe Huang, Chendong Xiang, Hang Su, Jun Zhu,
- Abstract summary: We introduce Video Diffusion for Action Reasoning (Vidar)<n>We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms.<n>With only 20 minutes of human demonstrations on an unseen robot platform, Vidar generalizes to unseen tasks and backgrounds with strong semantic understanding.
- Score: 21.424029706788883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bimanual robotic manipulation, which involves the coordinated control of two robotic arms, is foundational for solving challenging tasks. Despite recent progress in general-purpose manipulation, data scarcity and embodiment heterogeneity remain serious obstacles to further scaling up in bimanual settings. In this paper, we introduce Video Diffusion for Action Reasoning (Vidar), a two-stage framework that leverages large-scale, diffusion-based video pre-training and a novel masked inverse dynamics model for action prediction. We pre-train the video diffusion model on 750K multi-view videos from three real-world bimanual robot platforms, utilizing a unified observation space that encodes robot, camera, task, and scene contexts. Our masked inverse dynamics model learns masks to extract action-relevant information from generated trajectories without requiring pixel-level labels, and the masks can effectively generalize to unseen backgrounds. Our experiments demonstrate that with only 20 minutes of human demonstrations on an unseen robot platform (only 1% of typical data requirements), Vidar generalizes to unseen tasks and backgrounds with strong semantic understanding, surpassing state-of-the-art methods. Our findings highlight the potential of video foundation models, coupled with masked action prediction, to enable scalable and generalizable robotic manipulation in diverse real-world settings.
Related papers
- AMPLIFY: Actionless Motion Priors for Robot Learning from Videos [29.799207502031496]
We introduce AMPLIFY, a novel framework that leverages large-scale video data.<n>We train a forward dynamics model on abundant action-free videos and an inverse dynamics model on a limited set of action-labeled examples.<n>In downstream policy learning, our dynamics predictions enable a 1.2-2.2x improvement in low-data regimes, a 1.4x average improvement by learning from action-free human videos, and the first generalization to LIBERO tasks from zero in-distribution action data.
arXiv Detail & Related papers (2025-06-17T05:31:42Z) - VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation [53.63540587160549]
VidBot is a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos.<n> VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
arXiv Detail & Related papers (2025-03-10T10:04:58Z) - VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidMan is a novel framework that employs a two-stage training mechanism to enhance stability and improve data utilization efficiency.
Our framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset.
arXiv Detail & Related papers (2024-11-14T03:13:26Z) - RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation [23.554917579133576]
We present Robotics Diffusion Transformer (RDT), a pioneering diffusion foundation model for bimanual manipulation.<n>RDT builds on diffusion models to effectively represent multi-modality, with innovative designs of a scalable Transformer.<n>We further introduce a Physically Interpretable Unified Action Space, which can unify the action representations of various robots.
arXiv Detail & Related papers (2024-10-10T12:33:46Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training [69.54948297520612]
Learning a generalist embodied agent poses challenges, primarily stemming from the scarcity of action-labeled robotic datasets.
We introduce a novel framework to tackle these challenges, which leverages a unified discrete diffusion to combine generative pre-training on human videos and policy fine-tuning on a small number of action-labeled robot videos.
Our method generates high-fidelity future videos for planning and enhances the fine-tuned policies compared to previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-02-22T09:48:47Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.