論文の概要: Latent Anomaly Detection: Masked VQ-GAN for Unsupervised Segmentation in Medical CBCT
- arxiv url: http://arxiv.org/abs/2506.14209v1
- Date: Tue, 17 Jun 2025 05:58:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.350524
- Title: Latent Anomaly Detection: Masked VQ-GAN for Unsupervised Segmentation in Medical CBCT
- Title(参考訳): 医用CBCTにおける非教師的セグメンテーションのためのマスク付きVQ-GANの潜時異常検出
- Authors: Pengwei Wang,
- Abstract要約: 本研究の目的は、ONJ画像スキャンにおける異常を自動的に識別するための教師なしトレーニング手法を開発することである。
第1段階では、VQ-GANが訓練され、正常な被験者を正確に再構築する。
第2段階では、データを復元可能な新しいエンコーダをトレーニングするために、ランダムキューブマスキングとONJ固有のマスキングを適用する。
- 参考スコア(独自算出の注目度): 0.47587112043038626
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advances in treatment technology now allow for the use of customizable 3D-printed hydrogel wound dressings for patients with osteoradionecrosis (ORN) of the jaw (ONJ). Meanwhile, deep learning has enabled precise segmentation of 3D medical images using tools like nnUNet. However, the scarcity of labeled data in ONJ imaging makes supervised training impractical. This study aims to develop an unsupervised training approach for automatically identifying anomalies in imaging scans. We propose a novel two-stage training pipeline. In the first stage, a VQ-GAN is trained to accurately reconstruct normal subjects. In the second stage, random cube masking and ONJ-specific masking are applied to train a new encoder capable of recovering the data. The proposed method achieves successful segmentation on both simulated and real patient data. This approach provides a fast initial segmentation solution, reducing the burden of manual labeling. Additionally, it has the potential to be directly used for 3D printing when combined with hand-tuned post-processing.
- Abstract(参考訳): 治療技術の進歩により、顎骨壊死症(ONJ)患者にカスタマイズ可能な3Dプリントハイドロゲル創傷ドレッシングが利用可能になった。
一方、ディープラーニングはnnUNetのようなツールを使って、正確な3D医療画像のセグメンテーションを可能にした。
しかし、ONJ画像におけるラベル付きデータの不足は教師あり訓練を非現実的にする。
本研究の目的は、画像スキャンにおける異常を自動的に識別するための教師なしトレーニング手法を開発することである。
本稿では,新しい2段階トレーニングパイプラインを提案する。
第1段階では、VQ-GANが訓練され、正常な被験者を正確に再構築する。
第2段階では、データを復元可能な新しいエンコーダをトレーニングするために、ランダムキューブマスキングとONJ固有のマスキングを適用する。
提案手法は,シミュレートされた患者データと実際の患者データの両方に対するセグメンテーションを成功させる。
このアプローチは、手動ラベリングの負担を軽減する、高速な初期セグメンテーションソリューションを提供する。
さらに、手作業による後処理と組み合わせることで、直接3Dプリンティングに使用できる可能性がある。
関連論文リスト
- Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3次元医用画像のセグメンテーションは、疾患の診断と治療計画に重要な意味を持つ課題である。
近年の深層学習の進歩は、完全に教師付き医療画像のセグメンテーションを著しく強化している。
本稿では,3次元医用画像に特化して設計された,確率的適応型弱教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-05T00:46:53Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
そこで本研究では,隣接するスライスのディスクリプタに基づいて,CTスキャンでエンフスライスレベルの分類器を訓練する新しい手法を提案する。
我々は、RSNA頭蓋内出血データセットの課題における、最高のパフォーマンスソリューションの上位4%において、単一のモデルを得る。
提案手法は汎用的であり,MRIなどの他の3次元診断タスクにも適用可能である。
論文 参考訳(メタデータ) (2022-08-05T23:20:37Z) - Medical Instrument Segmentation in 3D US by Hybrid Constrained
Semi-Supervised Learning [62.13520959168732]
3DUSにおける楽器セグメンテーションのための半教師付き学習フレームワークを提案する。
SSL学習を実現するため、Dual-UNetが提案されている。
提案手法は,Diceの約68.6%-69.1%,推定時間約1秒を実現している。
論文 参考訳(メタデータ) (2021-07-30T07:59:45Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
脳毛細血管の血流停止などの脳血管障害は、アルツハイマー病の認知機能低下と病態形成と関連している。
本稿では,3次元畳み込みニューラルネットワークを用いた脳画像中の毛細血管の自動検出のための深層学習に基づくアプローチについて述べる。
本手法は,他の手法よりも優れ,0.85マシューズ相関係数,85%感度,99.3%特異性を達成した。
論文 参考訳(メタデータ) (2021-04-04T20:30:14Z) - Planar 3D Transfer Learning for End to End Unimodal MRI Unbalanced Data
Segmentation [0.0]
本稿では,事前学習した2次元畳み込みニューラルネットワーク重みを平面3次元カーネルにマッピングする手法を提案する。
提案手法は2次元VGG-16から転送されるエンコーダを備えた平面3Dres-u-netネットワークにより検証される。
論文 参考訳(メタデータ) (2020-11-23T17:11:50Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z) - Embedding Task Knowledge into 3D Neural Networks via Self-supervised
Learning [21.902313057142905]
自己教師付き学習(SSL)は、アノテーション付きデータの潜在的な解決策である。
我々は,3次元医用画像分類,すなわちタスク関連コントラスト予測符号化(TCPC)のための新しいSSL手法を提案する。
TCPCは、タスク知識を3Dニューラルネットワークのトレーニングに組み込む。
論文 参考訳(メタデータ) (2020-06-10T12:37:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。