論文の概要: Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models
- arxiv url: http://arxiv.org/abs/2506.14291v1
- Date: Tue, 17 Jun 2025 08:05:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.388263
- Title: Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models
- Title(参考訳): Equivariance Everywhere Everywhere Every Once: A Precipe for Graph Foundation Models
- Authors: Ben Finkelshtein, İsmail İlkan Ceylan, Michael Bronstein, Ron Levie,
- Abstract要約: ノードレベルのタスクのためのグラフ基盤モデルを第一原理から設計するためのレシピを提案する。
本研究の基盤となる重要な要素は,グラフ基盤モデルが尊重すべき対称性を体系的に調査することである。
我々は29の実世界のノード分類データセットに関する広範な実験を通して、我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 13.053266613831447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph machine learning architectures are typically tailored to specific tasks on specific datasets, which hinders their broader applicability. This has led to a new quest in graph machine learning: how to build graph foundation models capable of generalizing across arbitrary graphs and features? In this work, we present a recipe for designing graph foundation models for node-level tasks from first principles. The key ingredient underpinning our study is a systematic investigation of the symmetries that a graph foundation model must respect. In a nutshell, we argue that label permutation-equivariance alongside feature permutation-invariance are necessary in addition to the common node permutation-equivariance on each local neighborhood of the graph. To this end, we first characterize the space of linear transformations that are equivariant to permutations of nodes and labels, and invariant to permutations of features. We then prove that the resulting network is a universal approximator on multisets that respect the aforementioned symmetries. Our recipe uses such layers on the multiset of features induced by the local neighborhood of the graph to obtain a class of graph foundation models for node property prediction. We validate our approach through extensive experiments on 29 real-world node classification datasets, demonstrating both strong zero-shot empirical performance and consistent improvement as the number of training graphs increases.
- Abstract(参考訳): グラフ機械学習アーキテクチャは通常、特定のデータセット上の特定のタスクに合わせて調整されるため、より広範な適用性が妨げられる。
任意のグラフや機能にまたがって一般化可能なグラフ基盤モデルを構築するにはどうすればよいのか?
本稿では,ノードレベルタスクのためのグラフ基盤モデルを第一原理から設計するためのレシピを提案する。
本研究の基盤となる重要な要素は,グラフ基盤モデルが尊重すべき対称性を体系的に調査することである。
簡単に言えば、グラフの各局所近傍における共通ノード置換不変性に加えて、特徴置換不変性を伴うラベル置換等価性が必要であると論じる。
この目的のために、まず、ノードとラベルの置換に等しく、特徴の置換に不変な線型変換の空間を特徴づける。
そして、得られたネットワークが上記の対称性を尊重する多重集合上の普遍近似であることが証明される。
提案手法では,グラフの局所的な近傍によって誘導される特徴の多元集合上のそのような層を用いて,ノード特性予測のためのグラフ基盤モデルのクラスを得る。
我々は,29の実世界のノード分類データセットに対する広範な実験を通じて,学習グラフの数が増えるにつれて,強力なゼロショット実験性能と一貫した改善の両立を実証する。
関連論文リスト
- Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
タスクツリーを用いたグラフのクロスタスク一般化のための新しい手法を提案する。
本稿では,グラフニューラルネットワーク(GNN)を多種多様なタスクツリー上で事前学習することにより,伝達可能な知識を誘導することを示す。
これにより、最小限の微調整で下流タスクに効率的に適応できる。
論文 参考訳(メタデータ) (2024-12-21T02:07:43Z) - GraphFM: A Scalable Framework for Multi-Graph Pretraining [2.882104808886318]
本稿では,さまざまな領域のグラフデータセットにまたがるノード分類タスクに適した,スケーラブルなマルチグラフ・マルチタスク事前学習手法を提案する。
我々は,740万以上のノードと1億1900万のエッジからなる152のグラフデータセットのモデルをトレーニングすることで,このアプローチの有効性を実証する。
以上の結果から,多種多様な実・合成グラフの事前学習により適応性と安定性が向上し,最先端のスペシャリストモデルと競合する結果が得られた。
論文 参考訳(メタデータ) (2024-07-16T16:51:43Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
自己アテンションと位置エンコーディングを組み込んだグラフトランスフォーマーは、さまざまなグラフ学習タスクのための強力なアーキテクチャとして登場した。
本稿では,半教師付き分類のための浅いグラフ変換器の理論的検討について紹介する。
論文 参考訳(メタデータ) (2024-06-04T05:30:16Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
本稿では,グラフ上の分布を構成するノードコピーモデルを提案する。
コピーモデルの有用性を3つのタスクで示す。
提案モデルを用いて,グラフトポロジに対する敵攻撃の効果を緩和する。
論文 参考訳(メタデータ) (2022-08-04T04:04:49Z) - Permutation-Invariant Variational Autoencoder for Graph-Level
Representation Learning [0.0]
グラフ構造データに対する置換不変変分オートエンコーダを提案する。
本モデルは、特定のノード順序を強制することなく、入出力グラフのノード順序を間接的に学習する。
提案モデルの有効性を様々なグラフの再構築や生成タスクで実証する。
論文 参考訳(メタデータ) (2021-04-20T09:44:41Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
本稿では,2つのアイデアに基づいた,強力かつ同変なメッセージパッシングフレームワークを提案する。
まず、各ノードの周囲の局所的コンテキスト行列を学習するために、特徴に加えてノードの1ホット符号化を伝搬する。
次に,メッセージのパラメトリゼーション手法を提案する。
論文 参考訳(メタデータ) (2020-06-26T17:15:16Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
本稿では,最近のスコアベース生成モデルを用いて,グラフモデリングにおける置換不変手法を提案する。
特に、入力グラフにおけるデータ分布の勾配をモデル化するために、置換同変のマルチチャネルグラフニューラルネットワークを設計する。
グラフ生成では、我々の学習アプローチはベンチマークデータセット上の既存のモデルよりも良い、あるいは同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-02T03:06:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。