ADRD: LLM-Driven Autonomous Driving Based on Rule-based Decision Systems
- URL: http://arxiv.org/abs/2506.14299v1
- Date: Tue, 17 Jun 2025 08:18:20 GMT
- Title: ADRD: LLM-Driven Autonomous Driving Based on Rule-based Decision Systems
- Authors: Fanzhi Zeng, Siqi Wang, Chuzhao Zhu, Li Li,
- Abstract summary: We introduce the ADRD framework, which integrates three core modules: the Information Module, the Agents Module, and the Testing Module.<n>The framework exhibits superior performance in autonomous driving decision tasks.<n>This is the first work that integrates large language models with rule-based systems for autonomous driving decision-making.
- Score: 6.950569256149267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How to construct an interpretable autonomous driving decision-making system has become a focal point in academic research. In this study, we propose a novel approach that leverages large language models (LLMs) to generate executable, rule-based decision systems to address this challenge. Specifically, harnessing the strong reasoning and programming capabilities of LLMs, we introduce the ADRD(LLM-Driven Autonomous Driving Based on Rule-based Decision Systems) framework, which integrates three core modules: the Information Module, the Agents Module, and the Testing Module. The framework operates by first aggregating contextual driving scenario information through the Information Module, then utilizing the Agents Module to generate rule-based driving tactics. These tactics are iteratively refined through continuous interaction with the Testing Module. Extensive experimental evaluations demonstrate that ADRD exhibits superior performance in autonomous driving decision tasks. Compared to traditional reinforcement learning approaches and the most advanced LLM-based methods, ADRD shows significant advantages in terms of interpretability, response speed, and driving performance. These results highlight the framework's ability to achieve comprehensive and accurate understanding of complex driving scenarios, and underscore the promising future of transparent, rule-based decision systems that are easily modifiable and broadly applicable. To the best of our knowledge, this is the first work that integrates large language models with rule-based systems for autonomous driving decision-making, and our findings validate its potential for real-world deployment.
Related papers
- LeAD: The LLM Enhanced Planning System Converged with End-to-end Autonomous Driving [48.607991747956255]
We present LeAD, a dual-rate autonomous driving architecture integrating imitation learning-based end-to-end (E2E) frameworks with large language model (LLM) augmentation.<n>Our experimental evaluation in the CARLA Simulator demonstrates LeAD's superior handling of unconventional scenarios, achieving 71 points on Leaderboard V1 benchmark, with a route completion of 93%.
arXiv Detail & Related papers (2025-07-08T07:58:29Z) - VLAD: A VLM-Augmented Autonomous Driving Framework with Hierarchical Planning and Interpretable Decision Process [40.3578745624081]
We propose a vision-language autonomous driving model, which integrates a fine-tuned Visual Language Models (VLMs) with a state-of-the-art end-to-end system.<n>We implement a specialized fine-tuning approach using custom question-answer datasets designed specifically to improve the spatial reasoning capabilities of the model.<n>Our system produces interpretable natural language explanations of driving decisions, thereby increasing transparency and trustworthiness of the traditionally black-box end-to-end architecture.
arXiv Detail & Related papers (2025-07-02T01:52:40Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - A Survey on Large Language Model-empowered Autonomous Driving [25.963195890376646]
Development of autonomous driving (AD) technology follows two main technical paths: modularization and end-to-end.<n>This paper conducts a thorough analysis of the potential applications of large language models (LLMs) in AD systems.<n>We discuss an important question: Can LLM-based artificial general intelligence (AGI) be a key to achieve high-level AD?
arXiv Detail & Related papers (2024-09-21T15:07:37Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLM is a framework that can perform close-loop autonomous driving in realistic simulators.
We employ a multi-modal LLM (MLLM) to model the behavior planning module of a module AD system.
This model can plug-and-play in existing AD systems such as Apollo for close-loop driving.
arXiv Detail & Related papers (2023-12-14T18:59:05Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving [84.31119464141631]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.<n>Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - DiLu: A Knowledge-Driven Approach to Autonomous Driving with Large
Language Models [30.23228092898916]
We propose the DiLu framework, which combines a Reasoning and a Reflection module to enable the system to perform decision-making based on common-sense knowledge.
Extensive experiments prove DiLu's capability to accumulate experience and demonstrate a significant advantage in generalization ability.
To the best of our knowledge, we are the first to leverage knowledge-driven capability in decision-making for autonomous vehicles.
arXiv Detail & Related papers (2023-09-28T09:41:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.