hyperFA*IR: A hypergeometric approach to fair rankings with finite candidate pool
- URL: http://arxiv.org/abs/2506.14349v1
- Date: Tue, 17 Jun 2025 09:45:08 GMT
- Title: hyperFA*IR: A hypergeometric approach to fair rankings with finite candidate pool
- Authors: Mauritz N. Cartier van Dissel, Samuel Martin-Gutierrez, Lisette Espín-Noboa, Ana María Jaramillo, Fariba Karimi,
- Abstract summary: We present hyperFA*IR, a framework for assessing and enforcing fairness in rankings drawn from a finite set of candidates.<n>It relies on a generative process based on the hypergeometric distribution, which models real-world scenarios by sampling without replacement from fixed group sizes.<n>We also propose a Monte Carlo-based algorithm that efficiently detects unfair rankings by avoiding computationally expensive parameter tuning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ranking algorithms play a pivotal role in decision-making processes across diverse domains, from search engines to job applications. When rankings directly impact individuals, ensuring fairness becomes essential, particularly for groups that are marginalised or misrepresented in the data. Most of the existing group fairness frameworks often rely on ensuring proportional representation of protected groups. However, these approaches face limitations in accounting for the stochastic nature of ranking processes or the finite size of candidate pools. To this end, we present hyperFA*IR, a framework for assessing and enforcing fairness in rankings drawn from a finite set of candidates. It relies on a generative process based on the hypergeometric distribution, which models real-world scenarios by sampling without replacement from fixed group sizes. This approach improves fairness assessment when top-$k$ selections are large relative to the pool or when protected groups are small. We compare our approach to the widely used binomial model, which treats each draw as independent with fixed probability, and demonstrate$-$both analytically and empirically$-$that our method more accurately reproduces the statistical properties of sampling from a finite population. To operationalise this framework, we propose a Monte Carlo-based algorithm that efficiently detects unfair rankings by avoiding computationally expensive parameter tuning. Finally, we adapt our generative approach to define affirmative action policies by introducing weights into the sampling process.
Related papers
- A Principled Approach to Randomized Selection under Uncertainty: Applications to Peer Review and Grant Funding [68.43987626137512]
We propose a principled framework for randomized decision-making based on interval estimates of the quality of each item.<n>We introduce MERIT, an optimization-based method that maximizes the worst-case expected number of top candidates selected.<n>We prove that MERIT satisfies desirable axiomatic properties not guaranteed by existing approaches.
arXiv Detail & Related papers (2025-06-23T19:59:30Z) - Size-adaptive Hypothesis Testing for Fairness [8.315080617799445]
We introduce a unified, size-adaptive, hypothesis-testing framework that turns fairness assessment into an evidence-based statistical decision.<n>We prove a Central-Limit result for the statistical parity difference, leading to analytic confidence intervals and a Wald test whose type-I (false positive) error is guaranteed at level $alpha$.<n>For the long tail of small intersectional groups, we derive a fully Bayesian Dirichlet-multinomial estimator.
arXiv Detail & Related papers (2025-06-12T11:22:09Z) - Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness [53.96714099151378]
We propose a three-step approach for parameter-efficient fine-tuning of image-text foundation models.<n>Our method improves its two key components: minority samples identification and the robust training algorithm.<n>Our theoretical analysis shows that our PPA enhances minority group identification and is Bayes optimal for minimizing the balanced group error.
arXiv Detail & Related papers (2025-03-12T15:46:12Z) - Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
We leverage an online attack on the vulnerable data collection process.
From the game-theoretic perspective, the confrontation scenario is formulated as a distributionally robust game.
The proposed method manipulates the results of rank aggregation methods in a sequential manner.
arXiv Detail & Related papers (2024-07-02T03:31:21Z) - A Unified Post-Processing Framework for Group Fairness in Classification [10.615965454674901]
We present a post-processing algorithm for fair classification that covers group fairness criteria including statistical parity, equal opportunity, and equalized odds under a single framework.<n>Our algorithm, called "LinearPost", achieves fairness post-hoc by linearly transforming the predictions of the (unfair) base predictor with a "fairness risk" according to a weighted combination of the (predicted) group memberships.
arXiv Detail & Related papers (2024-05-07T05:58:44Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
We consider the problem of learning from data corrupted by underrepresentation bias.
We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out rates.
We show that our algorithm permits efficient learning for model classes of finite VC dimension.
arXiv Detail & Related papers (2023-06-19T18:25:44Z) - Detection of Groups with Biased Representation in Ranking [28.095668425175564]
We study the problem of detecting groups with biased representation in the top-$k$ ranked items.
We propose efficient search algorithms for two different fairness measures.
arXiv Detail & Related papers (2022-12-30T10:50:02Z) - Repairing Regressors for Fair Binary Classification at Any Decision
Threshold [8.322348511450366]
We show that we can increase fair performance across all thresholds at once.
We introduce a formal measure of Distributional Parity, which captures the degree of similarity in the distributions of classifications for different protected groups.
Our main result is to put forward a novel post-processing algorithm based on optimal transport, which provably maximizes Distributional Parity.
arXiv Detail & Related papers (2022-03-14T20:53:35Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Fast Fair Regression via Efficient Approximations of Mutual Information [0.0]
This paper introduces fast approximations of the independence, separation and sufficiency group fairness criteria for regression models.
It uses such approximations as regularisers to enforce fairness within a regularised risk minimisation framework.
Experiments in real-world datasets indicate that in spite of its superior computational efficiency our algorithm still displays state-of-the-art accuracy/fairness tradeoffs.
arXiv Detail & Related papers (2020-02-14T08:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.