Enclosing Prototypical Variational Autoencoder for Explainable Out-of-Distribution Detection
- URL: http://arxiv.org/abs/2506.14390v1
- Date: Tue, 17 Jun 2025 10:38:29 GMT
- Title: Enclosing Prototypical Variational Autoencoder for Explainable Out-of-Distribution Detection
- Authors: Conrad Orglmeister, Erik Bochinski, Volker Eiselein, Elvira Fleig,
- Abstract summary: We extend self-explainable Prototypical Variational models with autoencoder-based out-of-distribution (OOD) detection.<n>A Variational Autoencoder is applied to learn a meaningful latent space which can be used for distance-based classification.<n>A novel restriction loss is introduced that promotes a compact ID region in the latent space without collapsing it into single points.
- Score: 0.013888374577155822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the decision-making and trusting the reliability of Deep Machine Learning Models is crucial for adopting such methods to safety-relevant applications. We extend self-explainable Prototypical Variational models with autoencoder-based out-of-distribution (OOD) detection: A Variational Autoencoder is applied to learn a meaningful latent space which can be used for distance-based classification, likelihood estimation for OOD detection, and reconstruction. The In-Distribution (ID) region is defined by a Gaussian mixture distribution with learned prototypes representing the center of each mode. Furthermore, a novel restriction loss is introduced that promotes a compact ID region in the latent space without collapsing it into single points. The reconstructive capabilities of the Autoencoder ensure the explainability of the prototypes and the ID region of the classifier, further aiding the discrimination of OOD samples. Extensive evaluations on common OOD detection benchmarks as well as a large-scale dataset from a real-world railway application demonstrate the usefulness of the approach, outperforming previous methods.
Related papers
- Pseudo-label Induced Subspace Representation Learning for Robust Out-of-Distribution Detection [6.5679810906772325]
We propose a novel OOD detection framework based on a pseudo-label-induced subspace representation.<n>In addition, we introduce a simple yet effective learning criterion that integrates a cross-entropy-based ID classification loss with a subspace distance-based regularization loss to enhance ID-OOD separability.
arXiv Detail & Related papers (2025-08-05T05:38:00Z) - Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
We provide a more precise definition of the Semantic Space for the ID distribution.
We also define the "Tractable OOD" setting which ensures the distinguishability of OOD and ID distributions.
arXiv Detail & Related papers (2024-11-18T03:09:39Z) - Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection [30.02748131967826]
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples.
Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space.
We propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection.
arXiv Detail & Related papers (2024-11-16T04:54:07Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models.
We present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP.
arXiv Detail & Related papers (2024-06-16T23:55:25Z) - GROOD: Gradient-Aware Out-of-Distribution Detection [11.862922321532817]
Out-of-distribution (OOD) detection is crucial for ensuring the reliability of deep learning models in real-world applications.<n>We propose GRadient-aware Out-Of-Distribution detection (GROOD), a method that derives an OOD prototype from synthetic samples and computes class prototypes directly from In-distribution (ID) training data.<n>By analyzing the gradients of a nearest-class-prototype loss function concerning an artificial OOD prototype, our approach achieves a clear separation between in-distribution and OOD samples.
arXiv Detail & Related papers (2023-12-22T04:28:43Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Improving Out-of-Distribution Detection with Disentangled Foreground and Background Features [23.266183020469065]
We propose a novel framework that disentangles foreground and background features from ID training samples via a dense prediction approach.
It is a generic framework that allows for a seamless combination with various existing OOD detection methods.
arXiv Detail & Related papers (2023-03-15T16:12:14Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
We introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem.
We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric, which is well-suited to enhance the input and mitigate the overconfidence problem.
Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches.
arXiv Detail & Related papers (2022-11-21T08:45:08Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models.
We propose a general methodology named watermarking in this paper.
We learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking.
arXiv Detail & Related papers (2022-10-27T06:12:32Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.