A large-scale heterogeneous 3D magnetic resonance brain imaging dataset for self-supervised learning
- URL: http://arxiv.org/abs/2506.14432v1
- Date: Tue, 17 Jun 2025 11:48:05 GMT
- Title: A large-scale heterogeneous 3D magnetic resonance brain imaging dataset for self-supervised learning
- Authors: Asbjørn Munk, Stefano Cerri, Jakob Ambsdorf, Julia Machnio, Sebastian Nørgaard Llambias, Vardan Nersesjan, Christian Hedeager Krag, Peirong Liu, Pablo Rocamora García, Mostafa Mehdipour Ghazi, Mikael Boesen, Michael Eriksen Benros, Juan Eugenio Iglesias, Mads Nielsen,
- Abstract summary: FOMO60K is a large-scale, heterogeneous dataset of 60,529 brain Magnetic Resonance Imaging (MRI) scans from 13,900 sessions and 11,187 subjects, aggregated from 16 publicly available sources.<n>Minimal preprocessing was applied to preserve the original image characteristics while reducing barriers to entry for new users.
- Score: 4.49464615818827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present FOMO60K, a large-scale, heterogeneous dataset of 60,529 brain Magnetic Resonance Imaging (MRI) scans from 13,900 sessions and 11,187 subjects, aggregated from 16 publicly available sources. The dataset includes both clinical- and research-grade images, multiple MRI sequences, and a wide range of anatomical and pathological variability, including scans with large brain anomalies. Minimal preprocessing was applied to preserve the original image characteristics while reducing barriers to entry for new users. Accompanying code for self-supervised pretraining and finetuning is provided. FOMO60K is intended to support the development and benchmarking of self-supervised learning methods in medical imaging at scale.
Related papers
- MRI-CORE: A Foundation Model for Magnetic Resonance Imaging [10.722046937558627]
We introduce MRI-CORE, a vision foundation model pre-trained using more than 6 million slices from over 110,000 MRI volumes across 18 main body locations.<n>Experiments on five diverse object segmentation tasks in MRI demonstrate that MRI-CORE can significantly improve segmentation performance in realistic scenarios with limited labeled data availability.
arXiv Detail & Related papers (2025-06-13T19:26:56Z) - Towards a general-purpose foundation model for fMRI analysis [58.06455456423138]
We introduce NeuroSTORM, a framework that learns from 4D fMRI volumes and enables efficient knowledge transfer across diverse applications.<n>NeuroSTORM is pre-trained on 28.65 million fMRI frames (>9,000 hours) from over 50,000 subjects across multiple centers and ages 5 to 100.<n>It outperforms existing methods across five tasks: age/gender prediction, phenotype prediction, disease diagnosis, fMRI-to-image retrieval, and task-based fMRI.
arXiv Detail & Related papers (2025-06-11T23:51:01Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - Self-supervised Learning from 100 Million Medical Images [13.958840691105992]
We propose a method for self-supervised learning of rich image features based on contrastive learning and online feature clustering.
We leverage large training datasets of over 100,000,000 medical images of various modalities, including radiography, computed tomography (CT), magnetic resonance (MR) imaging and ultrasonography.
We highlight a number of advantages of this strategy on challenging image assessment problems in radiography, CT and MR.
arXiv Detail & Related papers (2022-01-04T18:27:04Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
We propose an interpretability aware adversarial training regime to improve robustness against out-of-distribution samples originating from different MRI hardware.
We present preliminary results showing promising performance on out-of-distribution samples.
arXiv Detail & Related papers (2021-11-15T04:42:47Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.