A Scalable Hybrid Training Approach for Recurrent Spiking Neural Networks
- URL: http://arxiv.org/abs/2506.14464v1
- Date: Tue, 17 Jun 2025 12:27:25 GMT
- Title: A Scalable Hybrid Training Approach for Recurrent Spiking Neural Networks
- Authors: Maximilian Baronig, Yeganeh Bahariasl, Ozan Ă–zdenizci, Robert Legenstein,
- Abstract summary: In this work, we introduce HYbrid PRopagation (HYPR) that combines the efficiency of parallelization with approximate online forward learning.<n>HYPR enables parallelization of parameter update over the sub sequences for RSNNs consisting of almost arbitrary non-linear spiking neuron models.<n>We find that this type of neuron model is particularly well trainable by HYPR, resulting in an unprecedentedly low task performance gap between approximate forward gradient learning and BPTT.
- Score: 13.220581846415957
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recurrent spiking neural networks (RSNNs) can be implemented very efficiently in neuromorphic systems. Nevertheless, training of these models with powerful gradient-based learning algorithms is mostly performed on standard digital hardware using Backpropagation through time (BPTT). However, BPTT has substantial limitations. It does not permit online training and its memory consumption scales linearly with the number of computation steps. In contrast, learning methods using forward propagation of gradients operate in an online manner with a memory consumption independent of the number of time steps. These methods enable SNNs to learn from continuous, infinite-length input sequences. Yet, slow execution speed on conventional hardware as well as inferior performance has hindered their widespread application. In this work, we introduce HYbrid PRopagation (HYPR) that combines the efficiency of parallelization with approximate online forward learning. Our algorithm yields high-throughput online learning through parallelization, paired with constant, i.e., sequence length independent, memory demands. HYPR enables parallelization of parameter update computation over the sub sequences for RSNNs consisting of almost arbitrary non-linear spiking neuron models. We apply HYPR to networks of spiking neurons with oscillatory subthreshold dynamics. We find that this type of neuron model is particularly well trainable by HYPR, resulting in an unprecedentedly low task performance gap between approximate forward gradient learning and BPTT.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - MesaNet: Sequence Modeling by Locally Optimal Test-Time Training [67.45211108321203]
We introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer.<n>We show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs.
arXiv Detail & Related papers (2025-06-05T16:50:23Z) - Time-independent Spiking Neuron via Membrane Potential Estimation for Efficient Spiking Neural Networks [4.142699381024752]
computational inefficiency of spiking neural networks (SNNs) is primarily due to the sequential updates of membrane potential.<n>We propose Membrane Potential Estimation Parallel Spiking Neurons (MPE-PSN), a parallel computation method for spiking neurons.<n>Our approach exhibits promise for enhancing computational efficiency, particularly under conditions of elevated neuron density.
arXiv Detail & Related papers (2024-09-08T05:14:22Z) - Neuromorphic Online Learning for Spatiotemporal Patterns with a
Forward-only Timeline [5.094970748243019]
Spiking neural networks (SNNs) are bio-plausible computing models with high energy efficiency.
Backpropagation Through Time (BPTT) is traditionally used to train SNNs.
We present Spatiotemporal Online Learning for Synaptic Adaptation (SOLSA), specifically designed for online learning of SNNs.
arXiv Detail & Related papers (2023-07-21T02:47:03Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
Spiking neural networks (SNN) are able to learn features while using less energy, especially on neuromorphic hardware.
Most widely used neuron in deep learning is the temporal and Fire (LIF) neuron.
arXiv Detail & Related papers (2023-06-22T04:25:27Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Accurate online training of dynamical spiking neural networks through
Forward Propagation Through Time [1.8515971640245998]
We show how a recently developed alternative to BPTT can be applied in spiking neural networks.
FPTT attempts to minimize an ongoing dynamically regularized risk on the loss.
We show that SNNs trained with FPTT outperform online BPTT approximations, and approach or exceed offline BPTT accuracy on temporal classification tasks.
arXiv Detail & Related papers (2021-12-20T13:44:20Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.