Automated Decision-Making on Networks with LLMs through Knowledge-Guided Evolution
- URL: http://arxiv.org/abs/2506.14529v1
- Date: Tue, 17 Jun 2025 13:53:48 GMT
- Title: Automated Decision-Making on Networks with LLMs through Knowledge-Guided Evolution
- Authors: Xiaohan Zheng, Lanning Wei, Yong Li, Quanming Yao,
- Abstract summary: We show how to design Graph Neural Networks (GNNs) automated through Large Language Models.<n>Our system develops a set of agents that construct graph-related know bases and then leverages Retrieval-Augmented Generation.<n>These agents, equipped with specialized knowledge bases, extract insights into tasks and graph structures by interacting with the knowledge bases.
- Score: 27.23265782420275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective decision-making on networks often relies on learning from graph-structured data, where Graph Neural Networks (GNNs) play a central role, but they take efforts to configure and tune. In this demo, we propose LLMNet, showing how to design GNN automated through Large Language Models. Our system develops a set of agents that construct graph-related knowlege bases and then leverages Retrieval-Augmented Generation (RAG) to support automated configuration and refinement of GNN models through a knowledge-guided evolution process. These agents, equipped with specialized knowledge bases, extract insights into tasks and graph structures by interacting with the knowledge bases. Empirical results show LLMNet excels in twelve datasets across three graph learning tasks, validating its effectiveness of GNN model designing.
Related papers
- Large Language Models Meet Graph Neural Networks: A Perspective of Graph Mining [2.8843412675137343]
We present a novel taxonomy for research in this interdisciplinary field, which involves three main categories: GNN-driving-LLM, GNN-driving-GNN, and GNN-LLM-co-driving.<n>Although Large Language Models have demonstrated their great potential in handling graph-structured data, their high computational requirements and complexity remain challenges.
arXiv Detail & Related papers (2024-12-26T13:21:09Z) - Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
We present an exhaustive review of the latest advancements in graph representation learning and Graph Neural Networks (GNNs)
GNNs, tailored to handle graph-structured data, excel in deriving insights and predictions from intricate relational information.
Our work delves into the capabilities of GNNs, examining their foundational designs and their application in addressing real-world challenges.
arXiv Detail & Related papers (2024-11-09T19:10:33Z) - Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
We introduce AskGNN, a novel approach that bridges the gap between sequential text processing and graph-structured data.<n>AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs.<n> Experiments across three tasks and seven LLMs demonstrate AskGNN's superior effectiveness in graph task performance.
arXiv Detail & Related papers (2024-10-09T17:19:12Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
Large Language Models (LLMs) with pretrained knowledge and powerful semantic comprehension abilities have recently shown a remarkable ability to benefit applications using vision and text data.
E-LLaGNN is a framework with an on-demand LLM service that enriches message passing procedure of graph learning by enhancing a limited fraction of nodes from the graph.
arXiv Detail & Related papers (2024-07-20T22:09:42Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
We aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks.
We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner.
We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-05-22T18:17:20Z) - Ensemble Learning for Graph Neural Networks [28.3650473174488]
Graph Neural Networks (GNNs) have shown success in various fields for learning from graph-structured data.
This paper investigates the application of ensemble learning techniques to improve the performance and robustness of GNNs.
arXiv Detail & Related papers (2023-10-22T03:55:13Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
We propose the first end-to-end framework for data-free adversarial knowledge distillation on graph structured data (DFAD-GNN)
To be specific, our DFAD-GNN employs a generative adversarial network, which mainly consists of three components: a pre-trained teacher model and a student model are regarded as two discriminators, and a generator is utilized for deriving training graphs to distill knowledge from the teacher model into the student model.
Our DFAD-GNN significantly surpasses state-of-the-art data-free baselines in the graph classification task.
arXiv Detail & Related papers (2022-05-08T08:19:40Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.