Deep Learning Surrogates for Real-Time Gas Emission Inversion
- URL: http://arxiv.org/abs/2506.14597v1
- Date: Tue, 17 Jun 2025 15:03:21 GMT
- Title: Deep Learning Surrogates for Real-Time Gas Emission Inversion
- Authors: Thomas Newman, Christopher Nemeth, Matthew Jones, Philip Jonathan,
- Abstract summary: Realtime identification and quantification of greenhouse-gas emissions under transient atmospheric conditions is a critical challenge in environmental monitoring.<n>We introduce a deep-learning computational fluid dynamics (CFD) framework that embeds a Monte Carlo sequential algorithm to perform Bayesian inference of both emission rate and source location in dynamic flow fields.<n>By substituting costly numerical solvers with a multilayer perceptron trained on high-fidelity CFD outputs, our surrogate captures spatial heterogeneity and temporal evolution of gas dispersion, while delivering near-real-time predictions.
- Score: 6.14441531828484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time identification and quantification of greenhouse-gas emissions under transient atmospheric conditions is a critical challenge in environmental monitoring. We introduce a spatio-temporal inversion framework that embeds a deep-learning surrogate of computational fluid dynamics (CFD) within a sequential Monte Carlo algorithm to perform Bayesian inference of both emission rate and source location in dynamic flow fields. By substituting costly numerical solvers with a multilayer perceptron trained on high-fidelity CFD outputs, our surrogate captures spatial heterogeneity and temporal evolution of gas dispersion, while delivering near-real-time predictions. Validation on the Chilbolton methane release dataset demonstrates comparable accuracy to full CFD solvers and Gaussian plume models, yet achieves orders-of-magnitude faster runtimes. Further experiments under simulated obstructed-flow scenarios confirm robustness in complex environments. This work reconciles physical fidelity with computational feasibility, offering a scalable solution for industrial emissions monitoring and other time-sensitive spatio-temporal inversion tasks in environmental and scientific modeling.
Related papers
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Conditional Diffusion-Based Retrieval of Atmospheric CO2 from Earth Observing Spectroscopy [0.0]
Upcoming satellite missions will provide orders of magnitude more data than the current constellation of GHG observers.<n>Development of fast and accurate retrieval algorithms with robust uncertainty quantification is critical.<n>We propose a diffusion-based approach to flexibly retrieve a Gaussian or non-Gaussian posterior, for NASA's Orbiting Carbon Observatory-2 spectrometer.
arXiv Detail & Related papers (2025-04-23T19:46:18Z) - Event Signal Filtering via Probability Flux Estimation [58.31652473933809]
Events offer a novel paradigm for capturing scene dynamics via asynchronous sensing, but their inherent randomness often leads to degraded signal quality.<n>Event signal filtering is thus essential for enhancing fidelity by reducing this internal randomness and ensuring consistent outputs across diverse acquisition conditions.<n>This paper introduces a generative, online filtering framework called Event Density Flow Filter (EDFilter)<n>Experiments validate EDFilter's performance across tasks like event filtering, super-resolution, and direct event-based blob tracking.
arXiv Detail & Related papers (2025-04-10T07:03:08Z) - Decrypting the temperature field in flow boiling with latent diffusion models [1.9190568044682759]
This paper presents an innovative method using Latent Diffusion Models (LDMs) to generate temperature fields from phase indicator maps.<n>By leveraging the BubbleML dataset from numerical simulations, the LDM phase field data translates into corresponding temperature distributions.<n>The resulting model effectively reconstructs complex temperature fields at interfaces.
arXiv Detail & Related papers (2025-01-27T21:18:05Z) - Diffusion-based subsurface CO$_2$ multiphysics monitoring and forecasting [4.2193475197905705]
We propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models.<n>This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties.<n>Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$$ monitoring.
arXiv Detail & Related papers (2024-07-25T23:04:37Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
We propose a two-step unsupervised deep learning framework named as Latent Autoregressive Recurrent Model (CLARM) for learning dynamics of charged particles in accelerators.
The CLARM can generate projections at various accelerator sampling modules by capturing and decoding the latent space representation.
The results demonstrate that the generative and forecasting ability of the proposed approach is promising when tested against a variety of evaluation metrics.
arXiv Detail & Related papers (2024-03-19T22:05:17Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
We introduce a soft absorbing state that facilitates the diffusion model in learning to reconstruct discrete mutations based on the underlying Gaussian space.
We employ state-of-the-art ODE solvers within the continuous space to expedite the sampling process.
Our proposed method effectively accelerates the training convergence by 4x and generates samples of similar quality 800x faster.
arXiv Detail & Related papers (2023-10-09T15:29:10Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - A Deep Learning-Accelerated Data Assimilation and Forecasting Workflow
for Commercial-Scale Geologic Carbon Storage [2.464972164779053]
We propose to leverage physical understandings of porous medium flow behavior with deep learning techniques to develop a fast history matching-reservoir response forecasting workflow.
We developed surrogate models to predict dynamic pressure and CO2 plume extents under multi-well injection.
The workflow can complete history matching and reservoir forecasting with uncertainty quantification in less than one hour on a mainstream personal workstation.
arXiv Detail & Related papers (2021-05-09T16:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.