GuiLoMo: Allocating Expert Number and Rank for LoRA-MoE via Bilevel Optimization with GuidedSelection Vectors
- URL: http://arxiv.org/abs/2506.14646v1
- Date: Tue, 17 Jun 2025 15:41:33 GMT
- Title: GuiLoMo: Allocating Expert Number and Rank for LoRA-MoE via Bilevel Optimization with GuidedSelection Vectors
- Authors: Hengyuan Zhang, Xinrong Chen, Yingmin Qiu, Xiao Liang, Ziyue Li, Guanyu Wang, Weiping Li, Tong Mo, Wenyue Li, Hayden Kwok-Hay So, Ngai Wong,
- Abstract summary: Low-Rank Adaptation (LoRA) is an efficient way to adapt large language models with reduced computational costs.<n>GuiLoMo is a fine-grained layer-wise expert numbers and ranks allocation strategy.
- Score: 15.272860106697678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), offer an efficient way to adapt large language models with reduced computational costs. However, their performance is limited by the small number of trainable parameters. Recent work combines LoRA with the Mixture-of-Experts (MoE), i.e., LoRA-MoE, to enhance capacity, but two limitations remain in hindering the full exploitation of its potential: 1) the influence of downstream tasks when assigning expert numbers, and 2) the uniform rank assignment across all LoRA experts, which restricts representational diversity. To mitigate these gaps, we propose GuiLoMo, a fine-grained layer-wise expert numbers and ranks allocation strategy with GuidedSelection Vectors (GSVs). GSVs are learned via a prior bilevel optimization process to capture both model- and task-specific needs, and are then used to allocate optimal expert numbers and ranks. Experiments on three backbone models across diverse benchmarks show that GuiLoMo consistently achieves superior or comparable performance to all baselines. Further analysis offers key insights into how expert numbers and ranks vary across layers and tasks, highlighting the benefits of adaptive expert configuration. Our code is available at https://github.com/Liar406/Gui-LoMo.git.
Related papers
- MoRE: A Mixture of Low-Rank Experts for Adaptive Multi-Task Learning [18.0412262027514]
We propose a novel Mixture of Low-Rank Experts (MoRE) for multi-task.<n>Instead of using an individual LoRA for each task, we align different ranks of LoRA module with different tasks.<n>We also design a novel adaptive rank selector to select the appropriate expert for each task.
arXiv Detail & Related papers (2025-05-28T12:32:09Z) - Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning [76.10639521319382]
We propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework.<n>We show that Symbolic-MoE's instance-level expert selection improves performance by a large margin but -- when implemented naively -- can introduce a high computational overhead.
arXiv Detail & Related papers (2025-03-07T18:03:13Z) - Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.98941571078398]
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity.<n>Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules.<n>While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks.<n>We propose Single-ranked Mixture of Experts LoRA (textbfSMoRA), which embeds MoE into LoRA by textittreating each rank as an
arXiv Detail & Related papers (2025-01-25T06:56:39Z) - From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning [102.18178065928426]
Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead.<n>We propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict.
arXiv Detail & Related papers (2024-11-19T11:03:09Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Higher Layers Need More LoRA Experts [23.72297945365351]
We introduce a novel parameter-efficient MoE method, textittextbfMoE-LtextbfoRA with textbfLayer-wise Expert textbfAllocation (MoLA) for Transformer-based models.
Experiments on six well-known NLP and commonsense QA benchmarks demonstrate that MoLA achieves equal or superior performance compared to all baselines.
arXiv Detail & Related papers (2024-02-13T16:04:21Z) - LLaVA-MoLE: Sparse Mixture of LoRA Experts for Mitigating Data Conflicts
in Instruction Finetuning MLLMs [29.96139552754377]
We propose an efficient Mixture of Experts (MoE) design for instruction finetuning MLLMs.
Extensive experiments proved that LLaVA-MoLE effectively mitigates the data conflict issue when mixing multiple distinct instruction datasets.
LLaVA-MoLE can even outperform the plain-LoRA baseline trained with twice the samples.
arXiv Detail & Related papers (2024-01-29T13:48:36Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - SiRA: Sparse Mixture of Low Rank Adaptation [63.926732717719354]
We investigate the importance of leveraging "sparse" computation and propose SiRA: sparse mixture of low rank.
Specifically it enforces the top $k$ experts routing with a capacity limit restricting the maximum number of tokens each expert can process.
arXiv Detail & Related papers (2023-11-15T18:15:37Z) - One-for-All: Generalized LoRA for Parameter-Efficient Fine-tuning [34.109808214968176]
Generalized LoRA (GLoRA) is an advanced approach for universal parameter-efficient fine-tuning tasks.
It employs a generalized prompt module to optimize pre-trained model weights and adjust intermediate activations.
GLoRA exhibits strong transfer learning, few-shot learning and domain generalization abilities.
arXiv Detail & Related papers (2023-06-13T17:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.