From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning
- URL: http://arxiv.org/abs/2411.12787v3
- Date: Tue, 01 Jul 2025 11:18:54 GMT
- Title: From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning
- Authors: Pengkun Jiao, Bin Zhu, Jingjing Chen, Chong-Wah Ngo, Yu-Gang Jiang,
- Abstract summary: Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead.<n>We propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict.
- Score: 102.18178065928426
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead. However, as task diversity and complexity increase, EVIT faces significant challenges in resolving data conflicts. To address this limitation, we propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict through dual structural optimization. Specifically, we utilize two subspaces: a skill space for stable, holistic knowledge retention, and a rank-rectified task space that locally activates the holistic knowledge. Additionally, we introduce Visual Cue Enhancement (VCE), a multi-level local feature aggregation module designed to enrich the vision-language projection with local details. Our approach is both memory- and time-efficient, requiring only 1.16$\times$ the inference time of the standard LoRA method (with injection into the query and value projection layers), and just 73\% of the inference time of a 4-expert LoRA-MoE. Extensive experiments on various downstream tasks and general MLLM benchmarks validate the effectiveness of our proposed methods.
Related papers
- Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning [20.31474646915225]
We show that a simplified multi-head architecture with high inter-head similarity outperforms complex multi-adapter and multi-head systems.<n>We propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space.
arXiv Detail & Related papers (2025-08-07T07:02:55Z) - Lumina-OmniLV: A Unified Multimodal Framework for General Low-Level Vision [40.27654736294303]
Lunima- OmniLV is a universal multimodal multi-task framework for low-level vision.
It addresses over 100 sub-tasks across four major categories: image restoration, image enhancement, weak-semantic dense prediction, and stylization.
arXiv Detail & Related papers (2025-04-07T10:22:00Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) is a cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding.<n>It serves as an essential testing ground for Multimodal Large Language Models (MLLMs)
arXiv Detail & Related papers (2025-02-27T13:58:44Z) - Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.
Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.
We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
Task Preference Optimization (TPO) is a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks.
By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance.
Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models.
arXiv Detail & Related papers (2024-12-26T18:56:05Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.<n>LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.<n>We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Separable Mixture of Low-Rank Adaptation for Continual Visual Instruction Tuning [16.873306091966693]
Visual instruction tuning enables large language models (MLLMs) to handle a wide range of vision tasks by framing them as language-based instructions.
We identify a dual form of catastrophic forgetting in CVIT, where MLLMs forget previously learned visual understanding but also experience a decline in instruction following abilities.
We introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules.
This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance.
arXiv Detail & Related papers (2024-11-21T09:00:15Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLM is a novel framework designed to enable the instant derivation of large language models of arbitrary shapes.
AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications.
arXiv Detail & Related papers (2024-11-15T22:02:28Z) - VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
We present VipAct, an agent framework that enhances vision-language models (VLMs)
VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks.
We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements.
arXiv Detail & Related papers (2024-10-21T18:10:26Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing MTL capabilities.<n> MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and capture shared knowledge.<n>This approach enables pre-trained models to jointly adapt to different target domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - CROME: Cross-Modal Adapters for Efficient Multimodal LLM [28.337072921099494]
Multimodal Large Language Models (MLLMs) demonstrate remarkable image-language capabilities.
Existing approaches often necessitate expensive language model retraining and limited adaptability.
We propose CROME, an efficient vision-language instruction tuning framework.
arXiv Detail & Related papers (2024-08-13T03:45:11Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [56.391404083287235]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - A Framework to Implement 1+N Multi-task Fine-tuning Pattern in LLMs
Using the CGC-LORA Algorithm [7.521690071464451]
We propose a unified framework that implements a 1 + N mutli-task fine-tuning pattern in large language models (LLMs)
Our work aims to take an advantage of both MTL (i.e., CGC) and PEFT (i.e., LoRA) scheme.
arXiv Detail & Related papers (2024-01-22T07:58:31Z) - M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action
Recognition [39.92547393649842]
We introduce a novel Multimodal, Multi-task CLIP adapting framework named name to address these challenges.
We demonstrate exceptional performance in supervised learning while maintaining strong generalization in zero-shot scenarios.
arXiv Detail & Related papers (2024-01-22T02:03:31Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Image Difference Captioning with Pre-training and Contrastive Learning [45.59621065755761]
The Image Difference Captioning (IDC) task aims to describe the visual differences between two similar images with natural language.
The major challenges of this task lie in two aspects: 1) fine-grained visual differences that require learning stronger vision and language association and 2) high-cost of manual annotations.
We propose a new modeling framework following the pre-training-finetuning paradigm to address these challenges.
arXiv Detail & Related papers (2022-02-09T06:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.