Massive Supervised Fine-tuning Experiments Reveal How Data, Layer, and Training Factors Shape LLM Alignment Quality
- URL: http://arxiv.org/abs/2506.14681v1
- Date: Tue, 17 Jun 2025 16:13:15 GMT
- Title: Massive Supervised Fine-tuning Experiments Reveal How Data, Layer, and Training Factors Shape LLM Alignment Quality
- Authors: Yuto Harada, Yusuke Yamauchi, Yusuke Oda, Yohei Oseki, Yusuke Miyao, Yu Takagi,
- Abstract summary: Supervised fine-tuning (SFT) is a critical step in aligning large language models with human instructions and values.<n>We trained a wide range of base models on a variety of datasets including code generation, mathematical reasoning, and general-domain tasks.<n>We will release these 1,000+ SFT models and benchmark results to accelerate further research.
- Score: 10.74213785908381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised fine-tuning (SFT) is a critical step in aligning large language models (LLMs) with human instructions and values, yet many aspects of SFT remain poorly understood. We trained a wide range of base models on a variety of datasets including code generation, mathematical reasoning, and general-domain tasks, resulting in 1,000+ SFT models under controlled conditions. We then identified the dataset properties that matter most and examined the layer-wise modifications introduced by SFT. Our findings reveal that some training-task synergies persist across all models while others vary substantially, emphasizing the importance of model-specific strategies. Moreover, we demonstrate that perplexity consistently predicts SFT effectiveness--often surpassing superficial similarity between trained data and benchmark--and that mid-layer weight changes correlate most strongly with performance gains. We will release these 1,000+ SFT models and benchmark results to accelerate further research.
Related papers
- SFT-GO: Supervised Fine-Tuning with Group Optimization for Large Language Models [11.866570688304153]
Supervised fine-tuning (SFT) has become an essential step in tailoring large language models (LLMs) to align with human expectations and specific downstream tasks.<n>Existing SFT methods treat each training instance as a uniform sequence, giving equal importance to all tokens regardless of their relevance.<n>We introduce Supervised Fine-Tuning with Group Optimization (SFT-GO), a novel approach that treats groups of tokens differently based on their importance.
arXiv Detail & Related papers (2025-06-17T23:12:28Z) - IDEAL: Data Equilibrium Adaptation for Multi-Capability Language Model Alignment [29.703775936837012]
Large Language Models (LLMs) have achieved impressive performance through Supervised Fine-tuning (SFT) on diverse instructional datasets.<n>When training on multiple capabilities simultaneously, the mixture training dataset, governed by volumes of data from different domains, is a critical factor that directly impacts the final model's performance.<n>We introduce an innovative data equilibrium framework designed to effectively optimize volumes of data from different domains within mixture SFT datasets.
arXiv Detail & Related papers (2025-05-19T06:42:44Z) - Preference-Oriented Supervised Fine-Tuning: Favoring Target Model Over Aligned Large Language Models [12.500777267361102]
We introduce a novel textbfpreference-textbforiented supervised textbffine-textbftuning approach, namely PoFT.<n>The intuition is to boost SFT by imposing a particular preference: textitfavoring the target model over aligned LLMs on the same SFT data.<n>PoFT achieves stable and consistent improvements over the SFT baselines across different training datasets and base models.
arXiv Detail & Related papers (2024-12-17T12:49:14Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.<n>We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.<n>Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - Sampling Foundational Transformer: A Theoretical Perspective [12.7600763629179]
We propose Foundational Sampling Transformer (SFT) that can work on multiple data modalities.
SFT has achieved competitive results on many benchmarks, while being faster in inference, compared to other very specialized models.
arXiv Detail & Related papers (2024-08-11T16:53:09Z) - LTSM-Bundle: A Toolbox and Benchmark on Large Language Models for Time Series Forecasting [69.33802286580786]
We introduce LTSM-Bundle, a comprehensive toolbox, and benchmark for training LTSMs.<n>It modularized and benchmarked LTSMs from multiple dimensions, encompassing prompting strategies, tokenization approaches, base model selection, data quantity, and dataset diversity.<n> Empirical results demonstrate that this combination achieves superior zero-shot and few-shot performances compared to state-of-the-art LTSMs and traditional TSF methods.
arXiv Detail & Related papers (2024-06-20T07:09:19Z) - How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition [64.86360698067764]
This study focuses on the interplay of data composition between mathematical reasoning, code generation, and general human-aligning abilities during supervised fine-tuning.
Our experiments reveal that distinct capabilities scale differently and larger models generally show superior performance with same amount of data.
Our findings suggest the amount of composition data influences performance more than the composition ratio.
arXiv Detail & Related papers (2023-10-09T07:56:16Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
We make a systematic review of the literature, including the general methodology of supervised fine-tuning (SFT)<n>We also review the potential pitfalls of SFT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies.
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
We evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples.
We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models.
We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
arXiv Detail & Related papers (2021-06-01T22:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.