Casper: Inferring Diverse Intents for Assistive Teleoperation with Vision Language Models
- URL: http://arxiv.org/abs/2506.14727v2
- Date: Fri, 04 Jul 2025 20:27:52 GMT
- Title: Casper: Inferring Diverse Intents for Assistive Teleoperation with Vision Language Models
- Authors: Huihan Liu, Rutav Shah, Shuijing Liu, Jack Pittenger, Mingyo Seo, Yuchen Cui, Yonatan Bisk, Roberto Martín-Martín, Yuke Zhu,
- Abstract summary: A central challenge in real-world assistive teleoperation is for the robot to infer a wide range of human intentions from user control inputs.<n>We introduce Casper, an assistive teleoperation system that leverages commonsense knowledge embedded in pre-trained visual language models.<n>We show that Casper improves task performance, reduces human cognitive load, and achieves higher user satisfaction than direct teleoperation and assistive teleoperation baselines.
- Score: 50.19518681574399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assistive teleoperation, where control is shared between a human and a robot, enables efficient and intuitive human-robot collaboration in diverse and unstructured environments. A central challenge in real-world assistive teleoperation is for the robot to infer a wide range of human intentions from user control inputs and to assist users with correct actions. Existing methods are either confined to simple, predefined scenarios or restricted to task-specific data distributions at training, limiting their support for real-world assistance. We introduce Casper, an assistive teleoperation system that leverages commonsense knowledge embedded in pre-trained visual language models (VLMs) for real-time intent inference and flexible skill execution. Casper incorporates an open-world perception module for a generalized understanding of novel objects and scenes, a VLM-powered intent inference mechanism that leverages commonsense reasoning to interpret snippets of teleoperated user input, and a skill library that expands the scope of prior assistive teleoperation systems to support diverse, long-horizon mobile manipulation tasks. Extensive empirical evaluation, including human studies and system ablations, demonstrates that Casper improves task performance, reduces human cognitive load, and achieves higher user satisfaction than direct teleoperation and assistive teleoperation baselines. More information is available at https://ut-austin-rpl.github.io/casper/
Related papers
- Open-TeleVision: Teleoperation with Immersive Active Visual Feedback [17.505318269362512]
Open-TeleVision allows operators to actively perceive the robot's surroundings in a stereoscopic manner.
The system mirrors the operator's arm and hand movements on the robot, creating an immersive experience.
We validate the effectiveness of our system by collecting data and training imitation learning policies on four long-horizon, precise tasks.
arXiv Detail & Related papers (2024-07-01T17:55:35Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
We introduce a novel system for joint learning between human operators and robots.
It enables human operators to share control of a robot end-effector with a learned assistive agent.
It reduces the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks.
arXiv Detail & Related papers (2024-06-29T03:37:29Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
We introduce Marking Open-world Keypoint Affordances (MOKA) to solve robotic manipulation tasks specified by free-form language instructions.
Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world.
We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
arXiv Detail & Related papers (2024-03-05T18:08:45Z) - Human-oriented Representation Learning for Robotic Manipulation [64.59499047836637]
Humans inherently possess generalizable visual representations that empower them to efficiently explore and interact with the environments in manipulation tasks.
We formalize this idea through the lens of human-oriented multi-task fine-tuning on top of pre-trained visual encoders.
Our Task Fusion Decoder consistently improves the representation of three state-of-the-art visual encoders for downstream manipulation policy-learning.
arXiv Detail & Related papers (2023-10-04T17:59:38Z) - GoferBot: A Visual Guided Human-Robot Collaborative Assembly System [33.649596318580215]
GoferBot is a novel vision-based semantic HRC system for a real-world assembly task.
GoferBot is a novel assembly system that seamlessly integrates all sub-modules by utilising implicit semantic information purely from visual perception.
arXiv Detail & Related papers (2023-04-18T09:09:01Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement
Learning [91.58711082348293]
Reinforcement learning from online user feedback on the system's performance presents a natural solution to this problem.
This approach tends to require a large amount of human-in-the-loop training data, especially when feedback is sparse.
We propose a hierarchical solution that learns efficiently from sparse user feedback.
arXiv Detail & Related papers (2022-02-05T02:01:19Z) - Scene Editing as Teleoperation: A Case Study in 6DoF Kit Assembly [18.563562557565483]
We propose the framework "Scene Editing as Teleoperation" (SEaT)
Instead of controlling the robot, users focus on specifying the task's goal.
A user can perform teleoperation without any expert knowledge of the robot hardware.
arXiv Detail & Related papers (2021-10-09T04:22:21Z) - Learning Visually Guided Latent Actions for Assistive Teleoperation [9.75385535829762]
We develop assistive robots that condition their latent embeddings on visual inputs.
We show that incorporating object detectors pretrained on small amounts of cheap, easy-to-collect structured data enables i) accurately recognizing the current context and ii) generalizing control embeddings to new objects and tasks.
arXiv Detail & Related papers (2021-05-02T23:58:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.