論文の概要: ViLLa: A Neuro-Symbolic approach for Animal Monitoring
- arxiv url: http://arxiv.org/abs/2506.14823v1
- Date: Thu, 12 Jun 2025 16:57:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.400755
- Title: ViLLa: A Neuro-Symbolic approach for Animal Monitoring
- Title(参考訳): ViLLa: 動物モニタリングのためのニューロシンボリックアプローチ
- Authors: Harsha Koduri,
- Abstract要約: この研究は、解釈可能な動物モニタリングのために設計されたニューロシンボリックなフレームワークであるViLLaを紹介する。
ViLLaは、画像中の動物とその空間的位置を識別するための視覚的検出モジュール、自然言語クエリを理解するための言語、そしてそれらのクエリに論理ベースの推論を適用するシンボリック推論レイヤを統合する。
エンドツーエンドのブラックボックスモデルとは異なり、ViLLaは知覚、理解、推論を分離し、モジュール性と透明性を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring animal populations in natural environments requires systems that can interpret both visual data and human language queries. This work introduces ViLLa (Vision-Language-Logic Approach), a neuro-symbolic framework designed for interpretable animal monitoring. ViLLa integrates three core components: a visual detection module for identifying animals and their spatial locations in images, a language parser for understanding natural language queries, and a symbolic reasoning layer that applies logic-based inference to answer those queries. Given an image and a question such as "How many dogs are in the scene?" or "Where is the buffalo?", the system grounds visual detections into symbolic facts and uses predefined rules to compute accurate answers related to count, presence, and location. Unlike end-to-end black-box models, ViLLa separates perception, understanding, and reasoning, offering modularity and transparency. The system was evaluated on a range of animal imagery tasks and demonstrates the ability to bridge visual content with structured, human-interpretable queries.
- Abstract(参考訳): 自然環境における動物集団のモニタリングには、視覚データと人間の言語クエリの両方を解釈できるシステムが必要である。
この研究は、解釈可能な動物モニタリング用に設計されたニューロシンボリック・シンボリック・フレームワークであるViLLa(Vision-Language-Logic Approach)を紹介する。
ViLLaは、画像中の動物とその空間的位置を識別する視覚的検出モジュール、自然言語クエリを理解するための言語パーサ、これらのクエリに論理ベースの推論を適用するシンボリック推論レイヤの3つのコアコンポーネントを統合している。
画像と「何匹の犬が現場にいるのか?」や「バッファローはどこにあるのか?」といった質問を与えられたシステムは、視覚的な検出を象徴的な事実に置き、事前に定義されたルールを使用してカウント、存在、位置に関する正確な答えを計算する。
エンドツーエンドのブラックボックスモデルとは異なり、ViLLaは知覚、理解、推論を分離し、モジュール性と透明性を提供する。
このシステムは、動物画像のタスクに基づいて評価され、構造化された人間の解釈可能なクエリで視覚コンテンツをブリッジできることを実証した。
関連論文リスト
- An Individual Identity-Driven Framework for Animal Re-Identification [15.381573249551181]
IndivAIDはAnimal ReID用に特別に設計されたフレームワークである。
画像特異的で個人固有のテキスト記述を生成し、動物画像を通して個々の視覚概念をフルにキャプチャする。
8つのベンチマークデータセットと現実世界のStoatデータセットにわたる最先端メソッドに対する評価は、IndivAIDの有効性と適用性を示している。
論文 参考訳(メタデータ) (2024-10-30T11:34:55Z) - Help Me Identify: Is an LLM+VQA System All We Need to Identify Visual Concepts? [62.984473889987605]
本稿では,大規模言語モデルとVQA(Visual Question Answering)システムを活用した,視覚概念学習のためのゼロショットフレームワークを提案する。
VQAシステムに問い合わせ画像とともにこれらの質問を行い、回答を集約し、テスト画像中のオブジェクトの有無を判定する。
実験では,既存のゼロショット視覚分類法や少数ショット概念学習手法と同等の性能を示した。
論文 参考訳(メタデータ) (2024-10-17T15:16:10Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - UniAP: Towards Universal Animal Perception in Vision via Few-shot
Learning [24.157933537030086]
様々な視覚的タスクにおいて種間認識を可能にする新しいユニバーサル・アニマル・パーセプション・モデルであるUniAPを紹介した。
異なる動物やタスク間で共有される視覚的特徴を活かすことで、UniAPは、よく研究された種から限られたラベル付きデータや未知の種への知識の伝達を可能にしている。
論文 参考訳(メタデータ) (2023-08-19T09:13:46Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
本稿では,コンテキストオブジェクト検出の新たな研究課題について紹介する。
言語クローゼテスト,視覚キャプション,質問応答の3つの代表的なシナリオについて検討した。
本稿では、視覚的コンテキストのエンドツーエンドの微分可能なモデリングが可能な統合マルチモーダルモデルContextDETを提案する。
論文 参考訳(メタデータ) (2023-05-29T17:50:33Z) - CLEAR: Improving Vision-Language Navigation with Cross-Lingual,
Environment-Agnostic Representations [98.30038910061894]
VLN(Vision-and-Language Navigation)タスクでは、エージェントが言語命令に基づいて環境をナビゲートする必要がある。
CLEAR: 言語横断表現と環境非依存表現を提案する。
我々の言語と視覚表現は、Room-to-Room and Cooperative Vision-and-Dialogue Navigationタスクにうまく転送できる。
論文 参考訳(メタデータ) (2022-07-05T17:38:59Z) - Explainable Semantic Space by Grounding Language to Vision with
Cross-Modal Contrastive Learning [3.441021278275805]
視覚における言語学習の基盤となる2ストリームモデルを設計する。
このモデルはまず、視覚的表現と言語表現をMS COCOデータセットに合わせることを学習する。
トレーニング後、このモデルの言語ストリームは、視覚的に接地されたセマンティック空間に概念を埋め込むことができるスタンドアロン言語モデルである。
論文 参考訳(メタデータ) (2021-11-13T19:54:15Z) - Natural Language Rationales with Full-Stack Visual Reasoning: From
Pixels to Semantic Frames to Commonsense Graphs [106.15931418425906]
本研究は,複数の複雑な視覚的推論課題にまたがる自然言語の有理性の生成に焦点を当てた最初の研究である。
RationaleVT Transformerは、事前学習された言語モデルとオブジェクト認識、接地された視覚的セマンティックフレーム、視覚的コモンセンスグラフを組み合わせることで、自由テキスト論理を生成することを学習する統合モデルである。
実験の結果, 基礎となる事前学習言語モデルは視覚適応の恩恵を受けており, 複雑な視覚的・テキスト的推論タスクに対するモデル解釈可能性の補完として, 自由文合理化が有望な研究方向であることを示唆した。
論文 参考訳(メタデータ) (2020-10-15T05:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。