CALM: Contextual Analog Logic with Multimodality
- URL: http://arxiv.org/abs/2506.14936v1
- Date: Tue, 17 Jun 2025 19:40:32 GMT
- Title: CALM: Contextual Analog Logic with Multimodality
- Authors: Maxwell J. Jacobson, Corey J. Maley, Yexiang Xue,
- Abstract summary: We introduce Contextual Analog Logic with Multimodality (CALM)<n>CALM unites symbolic reasoning with neural generation.<n>It enables systems to make context-sensitive decisions grounded in real-world multi-modal data.
- Score: 9.763339269757227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce Contextual Analog Logic with Multimodality (CALM). CALM unites symbolic reasoning with neural generation, enabling systems to make context-sensitive decisions grounded in real-world multi-modal data. Background: Classic bivalent logic systems cannot capture the nuance of human decision-making. They also require human grounding in multi-modal environments, which can be ad-hoc, rigid, and brittle. Neural networks are good at extracting rich contextual information from multi-modal data, but lack interpretable structures for reasoning. Objectives: CALM aims to bridge the gap between logic and neural perception, creating an analog logic that can reason over multi-modal inputs. Without this integration, AI systems remain either brittle or unstructured, unable to generalize robustly to real-world tasks. In CALM, symbolic predicates evaluate to analog truth values computed by neural networks and constrained search. Methods: CALM represents each predicate using a domain tree, which iteratively refines its analog truth value when the contextual groundings of its entities are determined. The iterative refinement is predicted by neural networks capable of capturing multi-modal information and is filtered through a symbolic reasoning module to ensure constraint satisfaction. Results: In fill-in-the-blank object placement tasks, CALM achieved 92.2% accuracy, outperforming classical logic (86.3%) and LLM (59.4%) baselines. It also demonstrated spatial heatmap generation aligned with logical constraints and delicate human preferences, as shown by a human study. Conclusions: CALM demonstrates the potential to reason with logic structure while aligning with preferences in multi-modal environments. It lays the foundation for next-gen AI systems that require the precision and interpretation of logic and the multimodal information processing of neural networks.
Related papers
- A Comparative Study of Neurosymbolic AI Approaches to Interpretable Logical Reasoning [0.0]
General logical reasoning, defined as the ability to reason deductively on domain-agnostic tasks, continues to be a challenge for large language models (LLMs)<n>There has been a recent surge in interest in neurosymbolic AI, which attempts to incorporate logic into neural networks.<n>We first identify two main neurosymbolic approaches to improving logical reasoning.
arXiv Detail & Related papers (2025-08-05T12:14:32Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.<n>We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.<n>We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Neuro-Symbolic Contrastive Learning for Cross-domain Inference [13.649270716741535]
inductive logic programming (ILP) excels at inferring logical relationships across diverse, sparse and limited datasets.<n>This paper proposes a bridge between the two approaches: neuro-symbolic contrastive learning.
arXiv Detail & Related papers (2025-02-13T11:48:46Z) - Learning Interpretable Differentiable Logic Networks [3.8064485653035987]
We introduce a novel method for learning interpretable differentiable logic networks (DLNs)
We train these networks by softening and differentiating their discrete components, through binarization of inputs, binary logic operations, and connections between neurons.
Experimental results on twenty classification tasks indicate that differentiable logic networks can achieve accuracies comparable to or exceeding that of traditional NNs.
arXiv Detail & Related papers (2024-07-04T21:58:26Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
We introduce MuSR, a dataset for evaluating language models on soft reasoning tasks specified in a natural language narrative.
This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm.
Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning.
arXiv Detail & Related papers (2023-10-24T17:59:20Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Interpretable Multimodal Misinformation Detection with Logic Reasoning [40.851213962307206]
We propose a novel logic-based neural model for multimodal misinformation detection.
We parameterize symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses.
Results on three public datasets demonstrate the feasibility and versatility of our model.
arXiv Detail & Related papers (2023-05-10T08:16:36Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z) - Logical Neural Networks [51.46602187496816]
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning)
Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation.
Inference is omni rather than focused on predefined target variables, and corresponds to logical reasoning.
arXiv Detail & Related papers (2020-06-23T16:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.