An Observation on Lloyd's k-Means Algorithm in High Dimensions
- URL: http://arxiv.org/abs/2506.14952v1
- Date: Tue, 17 Jun 2025 20:06:41 GMT
- Title: An Observation on Lloyd's k-Means Algorithm in High Dimensions
- Authors: David Silva-Sánchez, Roy R. Lederman,
- Abstract summary: Clustering and estimating cluster means are core problems in statistics and machine learning.<n>We provide a theoretical explanation for the failure of k-means in high-dimensional settings with high noise and limited sample sizes.
- Score: 2.186901738997927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering and estimating cluster means are core problems in statistics and machine learning, with k-means and Expectation Maximization (EM) being two widely used algorithms. In this work, we provide a theoretical explanation for the failure of k-means in high-dimensional settings with high noise and limited sample sizes, using a simple Gaussian Mixture Model (GMM). We identify regimes where, with high probability, almost every partition of the data becomes a fixed point of the k-means algorithm. This study is motivated by challenges in the analysis of more complex cases, such as masked GMMs, and those arising from applications in Cryo-Electron Microscopy.
Related papers
- K*-Means: A Parameter-free Clustering Algorithm [55.20132267309382]
k*-means is a novel clustering algorithm that eliminates the need to set k or any other parameters.<n>It uses the minimum description length principle to automatically determine the optimal number of clusters, k*, by splitting and merging clusters.<n>We prove that k*-means is guaranteed to converge and demonstrate experimentally that it significantly outperforms existing methods in scenarios where k is unknown.
arXiv Detail & Related papers (2025-05-17T08:41:07Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Algorithme EM r\'egularis\'e [0.0]
This paper presents a regularized version of the EM algorithm that efficiently uses prior knowledge to cope with a small sample size.
Experiments on real data highlight the good performance of the proposed algorithm for clustering purposes.
arXiv Detail & Related papers (2023-07-04T23:19:25Z) - Regularized EM algorithm [9.367612782346205]
We present a regularized EM algorithm for GMM-s that can make efficient use of such prior knowledge as well as cope with LSS situations.
We show that the theoretical guarantees of convergence hold, leading to better performing EM algorithm for structured covariance matrix models or with low sample settings.
arXiv Detail & Related papers (2023-03-27T08:32:20Z) - Clustering based on Mixtures of Sparse Gaussian Processes [6.939768185086753]
How to cluster data using their low dimensional embedded space is still a challenging problem in machine learning.
In this article, we focus on proposing a joint formulation for both clustering and dimensionality reduction.
Our algorithm is based on a mixture of sparse Gaussian processes, which is called Sparse Gaussian Process Mixture Clustering (SGP-MIC)
arXiv Detail & Related papers (2023-03-23T20:44:36Z) - Regularization and Optimization in Model-Based Clustering [4.096453902709292]
k-means algorithm variants essentially fit a mixture of identical spherical Gaussians to data that vastly deviates from such a distribution.
We develop more effective optimization algorithms for general GMMs, and we combine these algorithms with regularization strategies that avoid overfitting.
These results shed new light on the current status quo between GMM and k-means methods and suggest the more frequent use of general GMMs for data exploration.
arXiv Detail & Related papers (2023-02-05T18:22:29Z) - A Non-Parametric Bootstrap for Spectral Clustering [0.7673339435080445]
We develop two novel algorithms that incorporate the spectral decomposition of the data matrix and a non-parametric bootstrap sampling scheme.
Our techniques are more consistent in their convergence when compared to other bootstrapped algorithms that fit finite mixture models.
arXiv Detail & Related papers (2022-09-13T08:37:05Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
Clustering is a fundamental primitive in unsupervised learning.
Recent work has established lower bounds against the class of low-degree methods.
We show that, perhaps surprisingly, this particular clustering model textitdoes not exhibit a statistical-to-computational gap.
arXiv Detail & Related papers (2021-12-07T18:50:17Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks.
We prove exacts characterising the estimator in high-dimensions via empirical risk minimisation.
We discuss how our theory can be applied beyond the scope of synthetic data.
arXiv Detail & Related papers (2021-06-07T16:53:56Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
We propose a novel framework for sparse k-means clustering that is intuitive, simple to implement, and competitive with state-of-the-art algorithms.
Our core method readily generalizes to several task-specific algorithms such as clustering on subsets of attributes and in partially observed data settings.
arXiv Detail & Related papers (2020-02-20T02:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.