CWGAN-GP Augmented CAE for Jamming Detection in 5G-NR in Non-IID Datasets
- URL: http://arxiv.org/abs/2506.15075v1
- Date: Wed, 18 Jun 2025 02:36:05 GMT
- Title: CWGAN-GP Augmented CAE for Jamming Detection in 5G-NR in Non-IID Datasets
- Authors: Samhita Kuili, Mohammadreza Amini, Burak Kantarci,
- Abstract summary: Over-the-air jamming attacks are prevalent as security attacks, compromising the quality of the received signal.<n>We simulate a jamming environment by incorporating additive white Gaussian noise (AWGN) into the real-world In-phase and Quadrature (I/Q) OFDM datasets.<n>A Convolutional Autoencoder (CAE) is exploited to implement a jamming detection over various characteristics.
- Score: 5.715528540446773
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the ever-expanding domain of 5G-NR wireless cellular networks, over-the-air jamming attacks are prevalent as security attacks, compromising the quality of the received signal. We simulate a jamming environment by incorporating additive white Gaussian noise (AWGN) into the real-world In-phase and Quadrature (I/Q) OFDM datasets. A Convolutional Autoencoder (CAE) is exploited to implement a jamming detection over various characteristics such as heterogenous I/Q datasets; extracting relevant information on Synchronization Signal Blocks (SSBs), and fewer SSB observations with notable class imbalance. Given the characteristics of datasets, balanced datasets are acquired by employing a Conv1D conditional Wasserstein Generative Adversarial Network-Gradient Penalty(CWGAN-GP) on both majority and minority SSB observations. Additionally, we compare the performance and detection ability of the proposed CAE model on augmented datasets with benchmark models: Convolutional Denoising Autoencoder (CDAE) and Convolutional Sparse Autoencoder (CSAE). Despite the complexity of data heterogeneity involved across all datasets, CAE depicts the robustness in detection performance of jammed signal by achieving average values of 97.33% precision, 91.33% recall, 94.08% F1-score, and 94.35% accuracy over CDAE and CSAE.
Related papers
- AugmentGest: Can Random Data Cropping Augmentation Boost Gesture Recognition Performance? [49.64902130083662]
This paper proposes a comprehensive data augmentation framework that integrates geometric transformations, random variations, rotation, zooming and intensity-based transformations.<n>The proposed augmentation strategy is evaluated on three models: multi-stream e2eET, FPPR point cloud-based hand gesture recognition (HGR), and DD-Network.
arXiv Detail & Related papers (2025-06-08T16:43:05Z) - VAE-based Feature Disentanglement for Data Augmentation and Compression in Generalized GNSS Interference Classification [42.14439854721613]
We propose variational autoencoders (VAEs) for disentanglement to extract essential latent features that enable accurate classification of interferences.<n>Our proposed VAE achieves a data compression rate ranging from 512 to 8,192 and achieves an accuracy up to 99.92%.
arXiv Detail & Related papers (2025-04-14T13:38:00Z) - Improved Anomaly Detection through Conditional Latent Space VAE Ensembles [49.1574468325115]
Conditional Latent space Variational Autoencoder (CL-VAE) improved pre-processing for anomaly detection on data with known inlier classes and unknown outlier classes.
Model shows increased accuracy in anomaly detection, achieving an AUC of 97.4% on the MNIST dataset.
In addition, the CL-VAE shows increased benefits from ensembling, a more interpretable latent space, and an increased ability to learn patterns in complex data with limited model sizes.
arXiv Detail & Related papers (2024-10-16T07:48:53Z) - CSI4Free: GAN-Augmented mmWave CSI for Improved Pose Classification [4.504838845625542]
There is a noticeable lack of research in the domain of COTS Wi-Fi sensing.
We develop a method that can generate synthetic mmWave channel state information (CSI) samples.
In particular, we use a generative adversarial network (GAN) on an existing dataset, to generate 30,000 additional CSI samples.
arXiv Detail & Related papers (2024-06-26T18:42:22Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - cDVGAN: One Flexible Model for Multi-class Gravitational Wave Signal and Glitch Generation [0.7853804618032806]
We present a novel conditional model in the Generative Adrial Network framework for simulating multiple classes of time-domain observations.
Our proposed cDVGAN outperforms 4 different baseline GAN models in replicating the features of the three classes.
Our experiments show that training convolutional neural networks with our cDVGAN-generated data improves the detection of samples embedded in detector noise.
arXiv Detail & Related papers (2024-01-29T17:59:26Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
Intrusion Detection Systems (IDS) play a critical role in protecting interconnected networks by detecting malicious actors and activities.
This paper introduces a novel ML-based network intrusion detection model that uses Random Oversampling (RO) to address data imbalance and Stacking Feature Embedding (PCA) for dimension reduction.
Using the CIC-IDS 2017 dataset, DT, RF, and ET models reach 99.99% accuracy, while DT and RF models obtain 99.94% accuracy on CIC-IDS 2018 dataset.
arXiv Detail & Related papers (2024-01-22T05:49:41Z) - Analysis and Detection against Network Attacks in the Overlapping
Phenomenon of Behavior Attribute [6.037603797518956]
We propose a multi-label detection model based on deep learning, MLD-Model, in which Wasserstein-Generative-Adversarial- Network-with-Gradient-Penalty (WGAN-GP) with improved loss performs data enhancement.
Experimental results demonstrate that MLD-Model can achieve excellent classification performance.
arXiv Detail & Related papers (2023-09-13T01:59:26Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
A swarm of intelligent wireless devices train a shared neural network model with the help of a drone.
The proposed framework achieves a significant speedup in training, leading to an average 24% and 87% saving in the drone hovering time.
arXiv Detail & Related papers (2023-03-03T23:46:25Z) - Augmentation-Aware Self-Supervision for Data-Efficient GAN Training [68.81471633374393]
Training generative adversarial networks (GANs) with limited data is challenging because the discriminator is prone to overfitting.
We propose a novel augmentation-aware self-supervised discriminator that predicts the augmentation parameter of the augmented data.
We compare our method with state-of-the-art (SOTA) methods using the class-conditional BigGAN and unconditional StyleGAN2 architectures.
arXiv Detail & Related papers (2022-05-31T10:35:55Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.