CSI4Free: GAN-Augmented mmWave CSI for Improved Pose Classification
- URL: http://arxiv.org/abs/2406.18684v2
- Date: Fri, 28 Jun 2024 05:43:41 GMT
- Title: CSI4Free: GAN-Augmented mmWave CSI for Improved Pose Classification
- Authors: Nabeel Nisar Bhat, Rafael Berkvens, Jeroen Famaey,
- Abstract summary: There is a noticeable lack of research in the domain of COTS Wi-Fi sensing.
We develop a method that can generate synthetic mmWave channel state information (CSI) samples.
In particular, we use a generative adversarial network (GAN) on an existing dataset, to generate 30,000 additional CSI samples.
- Score: 4.504838845625542
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Joint Communication and Sensing (JC&S), has demonstrated significant success, particularly in utilizing sub-6 GHz frequencies with commercial-off-the-shelf (COTS) Wi-Fi devices for applications such as localization, gesture recognition, and pose classification. Deep learning and the existence of large public datasets has been pivotal in achieving such results. However, at mmWave frequencies (30-300 GHz), which has shown potential for more accurate sensing performance, there is a noticeable lack of research in the domain of COTS Wi-Fi sensing. Challenges such as limited research hardware, the absence of large datasets, limited functionality in COTS hardware, and the complexities of data collection present obstacles to a comprehensive exploration of this field. In this work, we aim to address these challenges by developing a method that can generate synthetic mmWave channel state information (CSI) samples. In particular, we use a generative adversarial network (GAN) on an existing dataset, to generate 30,000 additional CSI samples. The augmented samples exhibit a remarkable degree of consistency with the original data, as indicated by the notably high GAN-train and GAN-test scores. Furthermore, we integrate the augmented samples in training a pose classification model. We observe that the augmented samples complement the real data and improve the generalization of the classification model.
Related papers
- DeepHeteroIoT: Deep Local and Global Learning over Heterogeneous IoT Sensor Data [9.531834233076934]
We propose a novel deep learning model that incorporates both Convolutional Neural Network and Bi-directional Gated Recurrent Unit to learn local and global features respectively.
In particular, the model achieves an average absolute improvement of 3.37% in Accuracy and 2.85% in F1-Score across datasets.
arXiv Detail & Related papers (2024-03-29T06:24:07Z) - Data Augmentation Techniques for Cross-Domain WiFi CSI-based Human
Activity Recognition [1.7404865362620803]
WiFi Channel State Information (CSI) enables contactless and visual privacy-preserving sensing in indoor environments.
Poor model generalization, due to varying environmental conditions and sensing hardware, is a well-known problem in this space.
Data augmentation techniques commonly used in image-based learning are applied to WiFi CSI to investigate their effects on model generalization performance.
arXiv Detail & Related papers (2024-01-01T22:27:59Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Generative adversarial networks for data-scarce spectral applications [0.0]
We report on an application of GANs in the domain of synthetic spectral data generation.
We show that CWGANs can act as a surrogate model with improved performance in the low-data regime.
arXiv Detail & Related papers (2023-07-14T16:27:24Z) - WiFi-TCN: Temporal Convolution for Human Interaction Recognition based
on WiFi signal [4.0773490083614075]
Wi-Fi based human activity recognition has gained considerable interest in recent times.
A challenge associated with Wi-Fi-based HAR is the significant decline in performance when the scene or subject changes.
We propose a novel approach that leverages a temporal convolution network with augmentations and attention, referred to as TCN-AA.
arXiv Detail & Related papers (2023-05-21T08:37:32Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - GAIA: A Transfer Learning System of Object Detection that Fits Your
Needs [136.60609274344893]
Transfer learning with pre-training on large-scale datasets has played an increasingly significant role in computer vision and natural language processing.
In this paper, we focus on the area of object detection and present a transfer learning system named GAIA.
GAIA is capable of providing powerful pre-trained weights, selecting models that conform to downstream demands such as latency constraints and specified data domains.
arXiv Detail & Related papers (2021-06-21T18:24:20Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage.
Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space.
Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space.
arXiv Detail & Related papers (2021-06-10T17:26:35Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
We propose an end-to-end 3-D lightweight convolutional neural network (CNN) for limited samples-based HSI classification.
Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost.
Our model achieves competitive performance for HSI classification compared to several state-of-the-art methods.
arXiv Detail & Related papers (2020-12-07T03:44:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.