論文の概要: In-Context Learning for Gradient-Free Receiver Adaptation: Principles, Applications, and Theory
- arxiv url: http://arxiv.org/abs/2506.15176v1
- Date: Wed, 18 Jun 2025 06:43:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.562429
- Title: In-Context Learning for Gradient-Free Receiver Adaptation: Principles, Applications, and Theory
- Title(参考訳): グラディエントフリーレシーバ適応のためのインコンテキストラーニング--原理,応用,理論
- Authors: Matteo Zecchin, Tomer Raviv, Dileep Kalathil, Krishna Narayanan, Nir Shlezinger, Osvaldo Simeone,
- Abstract要約: ディープラーニングベースの無線受信機は、様々なチャネル環境に動的に適応する能力を提供する。
ジョイントトレーニング、ハイパーネットワークベースの手法、メタラーニングを含む現在の適応戦略は、限られた柔軟性を示すか、勾配降下による明示的な最適化を必要とする。
本稿では、インコンテキスト学習(ICL)の新たなパラダイムに根ざした勾配なし適応手法を提案する。
- 参考スコア(独自算出の注目度): 54.92893355284945
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, deep learning has facilitated the creation of wireless receivers capable of functioning effectively in conditions that challenge traditional model-based designs. Leveraging programmable hardware architectures, deep learning-based receivers offer the potential to dynamically adapt to varying channel environments. However, current adaptation strategies, including joint training, hypernetwork-based methods, and meta-learning, either demonstrate limited flexibility or necessitate explicit optimization through gradient descent. This paper presents gradient-free adaptation techniques rooted in the emerging paradigm of in-context learning (ICL). We review architectural frameworks for ICL based on Transformer models and structured state-space models (SSMs), alongside theoretical insights into how sequence models effectively learn adaptation from contextual information. Further, we explore the application of ICL to cell-free massive MIMO networks, providing both theoretical analyses and empirical evidence. Our findings indicate that ICL represents a principled and efficient approach to real-time receiver adaptation using pilot signals and auxiliary contextual information-without requiring online retraining.
- Abstract(参考訳): 近年、ディープラーニングは、従来のモデルベース設計に挑戦する条件下で効果的に機能する無線受信機の開発を促進する。
プログラマブルなハードウェアアーキテクチャを活用することで、ディープラーニングベースの受信機は、様々なチャネル環境に動的に適応する可能性がある。
しかし、ジョイントトレーニング、ハイパーネットワークベースの手法、メタラーニングを含む現在の適応戦略は、限られた柔軟性を示すか、勾配降下による明示的な最適化を必要とする。
本稿では,インコンテキスト学習(ICL)の新たなパラダイムに根ざした,勾配のない適応手法を提案する。
本稿では、トランスフォーマーモデルと構造化状態空間モデル(SSM)に基づくICLのアーキテクチャフレームワークについて、シーケンスモデルが文脈情報からの適応を効果的に学習する方法に関する理論的知見とともにレビューする。
さらに,無細胞MIMOネットワークへのICLの適用について検討し,理論解析と実証的証拠の両方を提供する。
ICLは、パイロット信号と補助的文脈情報を用いたリアルタイムレシーバ適応への原則的かつ効率的なアプローチであり、オンラインリトレーニングを必要としない。
関連論文リスト
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Advancing Neural Network Performance through Emergence-Promoting Initialization Scheme [0.0]
機械学習の創発は、トレーニングデータのスケールと構造から生じる能力の自発的な出現を指す。
我々は、出現の可能性を高めることを目的とした、新しい単純なニューラルネットワーク初期化スキームを導入する。
バッチ正規化の有無にかかわらず,モデル精度とトレーニング速度の両面で大幅に向上したことを示す。
論文 参考訳(メタデータ) (2024-07-26T18:56:47Z) - Toward Adaptive Semantic Communications: Efficient Data Transmission via
Online Learned Nonlinear Transform Source-Channel Coding [11.101344530143303]
深層学習モデルの過剰適合性を利用したオンライン学習型ジョイントソースとチャネルコーディング手法を提案する。
具体的には,市販の事前訓練型モデルを軽量なオンライン方式で展開し,ソースデータと環境領域の分散シフトに適応させる。
私たちはオーバーフィットの概念を極端に捉え、モデルや表現を個々のデータやチャネル状態インスタンスに適応させる実装フレンドリな一連のメソッドを提案します。
論文 参考訳(メタデータ) (2022-11-08T16:00:27Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
本稿では,ニューラルネットワークのアーキテクチャを最適化するためのモデルベースエージェントを提案する。
提案手法は, 共通の畳み込みネットワーク上での最先端技術の性能に適合し, トランスフォーマースタイルのアーキテクチャでは最大5%性能が向上することを示す。
論文 参考訳(メタデータ) (2022-05-03T11:52:54Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。