TopClustRAG at SIGIR 2025 LiveRAG Challenge
- URL: http://arxiv.org/abs/2506.15246v1
- Date: Wed, 18 Jun 2025 08:24:27 GMT
- Title: TopClustRAG at SIGIR 2025 LiveRAG Challenge
- Authors: Juli Bakagianni, John Pavlopoulos, Aristidis Likas,
- Abstract summary: TopClustRAG is a retrieval-augmented generation (RAG) system developed for the LiveRAG Challenge.<n>Our system employs a hybrid retrieval strategy combining sparse and dense indices, followed by K-Means clustering to group semantically similar passages.
- Score: 2.56711111236449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present TopClustRAG, a retrieval-augmented generation (RAG) system developed for the LiveRAG Challenge, which evaluates end-to-end question answering over large-scale web corpora. Our system employs a hybrid retrieval strategy combining sparse and dense indices, followed by K-Means clustering to group semantically similar passages. Representative passages from each cluster are used to construct cluster-specific prompts for a large language model (LLM), generating intermediate answers that are filtered, reranked, and finally synthesized into a single, comprehensive response. This multi-stage pipeline enhances answer diversity, relevance, and faithfulness to retrieved evidence. Evaluated on the FineWeb Sample-10BT dataset, TopClustRAG ranked 2nd in faithfulness and 7th in correctness on the official leaderboard, demonstrating the effectiveness of clustering-based context filtering and prompt aggregation in large-scale RAG systems.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - RMIT-ADM+S at the SIGIR 2025 LiveRAG Challenge [4.364909807482374]
This paper presents the RMIT--ADM+S winning system in the SIGIR 2025 LiveRAG Challenge.<n>Our Generation-Retrieval-Augmented Generation (G-RAG) approach generates a hypothetical answer that is used during the retrieval phase, alongside the original question.<n>G-RAG also incorporates a pointwise large language model (LLM)-based re-ranking step prior to final answer generation.
arXiv Detail & Related papers (2025-06-17T13:41:12Z) - CIIR@LiveRAG 2025: Optimizing Multi-Agent Retrieval Augmented Generation through Self-Training [18.787703082459046]
mRAG is a multi-agent retrieval-augmented generation framework composed of specialized agents for subtasks such as planning, searching, reasoning, and coordination.<n> Evaluated on DataMorgana-derived datasets during the SIGIR 2025 LiveRAG competition, mRAG outperforms conventional RAG baselines.
arXiv Detail & Related papers (2025-06-12T16:02:29Z) - DeepRAG: Integrating Hierarchical Reasoning and Process Supervision for Biomedical Multi-Hop QA [18.943813768298188]
DeepRAG is a novel framework that integrates DeepSeek hierarchical question decomposition capabilities with RAG Gym unified retrieval-augmented generation optimization using process level supervision.<n>Preliminary evaluations on the MedHopQA dataset indicate that DeepRAG significantly outperforms baseline models, including standalone DeepSeek and RAG Gym, achieving notable improvements in both Exact Match and concept level accuracy.
arXiv Detail & Related papers (2025-05-31T18:52:05Z) - On the Influence of Context Size and Model Choice in Retrieval-Augmented Generation Systems [5.69361786082969]
Retrieval-augmented generation (RAG) has emerged as an approach to augment large language models (LLMs)<n>We evaluate various context sizes, BM25 and semantic search as retrievers, and eight base LLMs.<n>Our findings indicate that final QA performance improves steadily with up to 15 snippets but stagnates or declines beyond that.
arXiv Detail & Related papers (2025-02-20T17:34:34Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
We introduce CORAL, a benchmark designed to assess RAG systems in realistic multi-turn conversational settings.
CORAL includes diverse information-seeking conversations automatically derived from Wikipedia.
It supports three core tasks of conversational RAG: passage retrieval, response generation, and citation labeling.
arXiv Detail & Related papers (2024-10-30T15:06:32Z) - Do RAG Systems Cover What Matters? Evaluating and Optimizing Responses with Sub-Question Coverage [74.70255719194819]
We introduce a novel framework based on sub-question coverage, which measures how well a RAG system addresses different facets of a question.
We use this framework to evaluate three commercial generative answer engines: You.com, Perplexity AI, and Bing Chat.
We find that while all answer engines cover core sub-questions more often than background or follow-up ones, they still miss around 50% of core sub-questions.
arXiv Detail & Related papers (2024-10-20T22:59:34Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Reranking Overgenerated Responses for End-to-End Task-Oriented Dialogue
Systems [71.33737787564966]
End-to-end (E2E) task-oriented dialogue (ToD) systems are prone to fall into the so-called 'likelihood trap'
We propose a reranking method which aims to select high-quality items from the lists of responses initially overgenerated by the system.
Our methods improve a state-of-the-art E2E ToD system by 2.4 BLEU, 3.2 ROUGE, and 2.8 METEOR scores, achieving new peak results.
arXiv Detail & Related papers (2022-11-07T15:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.