論文の概要: RAS-Eval: A Comprehensive Benchmark for Security Evaluation of LLM Agents in Real-World Environments
- arxiv url: http://arxiv.org/abs/2506.15253v1
- Date: Wed, 18 Jun 2025 08:30:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.595753
- Title: RAS-Eval: A Comprehensive Benchmark for Security Evaluation of LLM Agents in Real-World Environments
- Title(参考訳): RAS-Eval: 実環境におけるLLMエージェントのセキュリティ評価のための総合ベンチマーク
- Authors: Yuchuan Fu, Xiaohan Yuan, Dongxia Wang,
- Abstract要約: RAS-Evalは、シミュレーションと実世界のツール実行の両方をサポートする包括的なセキュリティベンチマークである。
さまざまなシナリオにまたがって,最先端の言語モデル (LLM) エージェントを6つ評価した。
攻撃によりエージェントタスク完了率(TCR)は平均36.78%減少し、学術的な環境では85.65%の成功率を達成した。
- 参考スコア(独自算出の注目度): 5.3532199508293745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid deployment of Large language model (LLM) agents in critical domains like healthcare and finance necessitates robust security frameworks. To address the absence of standardized evaluation benchmarks for these agents in dynamic environments, we introduce RAS-Eval, a comprehensive security benchmark supporting both simulated and real-world tool execution. RAS-Eval comprises 80 test cases and 3,802 attack tasks mapped to 11 Common Weakness Enumeration (CWE) categories, with tools implemented in JSON, LangGraph, and Model Context Protocol (MCP) formats. We evaluate 6 state-of-the-art LLMs across diverse scenarios, revealing significant vulnerabilities: attacks reduced agent task completion rates (TCR) by 36.78% on average and achieved an 85.65% success rate in academic settings. Notably, scaling laws held for security capabilities, with larger models outperforming smaller counterparts. Our findings expose critical risks in real-world agent deployments and provide a foundational framework for future security research. Code and data are available at https://github.com/lanzer-tree/RAS-Eval.
- Abstract(参考訳): 医療や金融といった重要なドメインに大規模言語モデル(LLM)エージェントを迅速に配置するには、堅牢なセキュリティフレームワークが必要である。
動的環境におけるこれらのエージェントの標準評価ベンチマークの欠如に対処するため、シミュレーションと実世界のツール実行の両方をサポートする総合的なセキュリティベンチマークであるRAS-Evalを導入する。
RAS-Evalは80のテストケースと3,802のアタックタスクを11のCommon Weakness Enumeration (CWE)カテゴリにマッピングし、JSON、LangGraph、Model Context Protocol (MCP)フォーマットで実装されている。
エージェントタスク完了率(TCR)を平均36.78%削減し,85.65%の成功率を達成した。
特に、セキュリティ機能に関するスケーリングの法則は、より大型のモデルの方が、より小型のモデルよりも優れている。
本研究は,現実世界のエージェント展開における重大なリスクを明らかにし,今後のセキュリティ研究の基盤となる枠組みを提供する。
コードとデータはhttps://github.com/lanzer-tree/RAS-Eval.comで公開されている。
関連論文リスト
- SEC-bench: Automated Benchmarking of LLM Agents on Real-World Software Security Tasks [11.97472024483841]
SEC-benchは、大規模言語モデル(LLM)エージェントを評価するための、最初の完全に自動化されたベンチマークフレームワークである。
当社のフレームワークは,再現可能なアーティファクトを備えた高品質なソフトウェア脆弱性データセットを,インスタンス当たり0.87ドルで自動生成します。
最先端のLLMコードエージェントの包括的な評価では、大きなパフォーマンスギャップが明らかになっている。
論文 参考訳(メタデータ) (2025-06-13T13:54:30Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLMは、敵の攻撃や情報漏洩に対する協調的なマルチエージェント防御である。
テスト時のエージェント推論システムのスケーリングは,モデルの有用性を損なうことなく,ロバスト性を大幅に向上させることを示す。
アンラーニングやジェイルブレイクを含む主要な脅威シナリオに対する総合的な評価は、AegisLLMの有効性を示している。
論文 参考訳(メタデータ) (2025-04-29T17:36:05Z) - CVE-Bench: A Benchmark for AI Agents' Ability to Exploit Real-World Web Application Vulnerabilities [6.752938800468733]
大規模言語モデル(LLM)エージェントは、サイバー攻撃を自律的に行う能力が高まっている。
既存のベンチマークは、抽象化されたCapture the Flagコンペティションに制限されているか、包括的なカバレッジが欠如しているため、不足している。
私たちはCVE-Benchを紹介します。CVE-Benchは、クリティカルシヴァリティ・コモン・脆弱性と露出に基づく、現実世界のサイバーセキュリティベンチマークです。
論文 参考訳(メタデータ) (2025-03-21T17:32:32Z) - Agent-SafetyBench: Evaluating the Safety of LLM Agents [72.92604341646691]
我々は,大規模言語モデル(LLM)の安全性を評価するベンチマークであるAgent-SafetyBenchを紹介する。
Agent-SafetyBenchは349のインタラクション環境と2,000のテストケースを含み、安全リスクの8つのカテゴリを評価し、安全でないインタラクションで頻繁に発生する10の一般的な障害モードをカバーする。
16 名の LLM エージェントを評価した結果,いずれのエージェントも 60% 以上の安全性スコアを達成できないことがわかった。
論文 参考訳(メタデータ) (2024-12-19T02:35:15Z) - Agent Security Bench (ASB): Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents [32.62654499260479]
我々は,LSMベースのエージェントの攻撃と防御を形式化し,ベンチマークし,評価するフレームワークであるAgen Security Bench (ASB)を紹介した。
ASBをベースとして、インジェクション攻撃10件、メモリ中毒攻撃、新しいPlan-of-Thoughtバックドア攻撃4件、混合攻撃11件をベンチマークした。
ベンチマークの結果,システムプロンプト,ユーザプロンプト処理,ツール使用量,メモリ検索など,エージェント操作のさまざまな段階における重大な脆弱性が明らかになった。
論文 参考訳(メタデータ) (2024-10-03T16:30:47Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。