CANeRV: Content Adaptive Neural Representation for Video Compression
- URL: http://arxiv.org/abs/2502.06181v2
- Date: Thu, 13 Feb 2025 14:18:50 GMT
- Title: CANeRV: Content Adaptive Neural Representation for Video Compression
- Authors: Lv Tang, Jun Zhu, Xinfeng Zhang, Li Zhang, Siwei Ma, Qingming Huang,
- Abstract summary: We propose Content Adaptive Neural Representation for Video Compression (CANeRV)
CANeRV is an innovative INR-based video compression network that adaptively conducts structure optimisation based on the specific content of each video sequence.
We show that CANeRV can outperform both H.266/VVC and state-of-the-art INR-based video compression techniques across diverse video datasets.
- Score: 89.35616046528624
- License:
- Abstract: Recent advances in video compression introduce implicit neural representation (INR) based methods, which effectively capture global dependencies and characteristics of entire video sequences. Unlike traditional and deep learning based approaches, INR-based methods optimize network parameters from a global perspective, resulting in superior compression potential. However, most current INR methods utilize a fixed and uniform network architecture across all frames, limiting their adaptability to dynamic variations within and between video sequences. This often leads to suboptimal compression outcomes as these methods struggle to capture the distinct nuances and transitions in video content. To overcome these challenges, we propose Content Adaptive Neural Representation for Video Compression (CANeRV), an innovative INR-based video compression network that adaptively conducts structure optimisation based on the specific content of each video sequence. To better capture dynamic information across video sequences, we propose a dynamic sequence-level adjustment (DSA). Furthermore, to enhance the capture of dynamics between frames within a sequence, we implement a dynamic frame-level adjustment (DFA). {Finally, to effectively capture spatial structural information within video frames, thereby enhancing the detail restoration capabilities of CANeRV, we devise a structure level hierarchical structural adaptation (HSA).} Experimental results demonstrate that CANeRV can outperform both H.266/VVC and state-of-the-art INR-based video compression techniques across diverse video datasets.
Related papers
- CoordFlow: Coordinate Flow for Pixel-wise Neural Video Representation [11.364753833652182]
Implicit Neural Representation (INR) is a promising alternative to traditional transform-based methodologies.
We introduce CoordFlow, a novel pixel-wise INR for video compression.
It yields state-of-the-art results compared to other pixel-wise INRs and on-par performance compared to leading frame-wise techniques.
arXiv Detail & Related papers (2025-01-01T22:58:06Z) - Releasing the Parameter Latency of Neural Representation for High-Efficiency Video Compression [18.769136361963472]
implicit neural representation (INR) technique models entire videos as basic units, automatically capturing intra-frame and inter-frame correlations.
In this paper, we show that our method significantly enhances the rate-distortion performance of INR video compression.
arXiv Detail & Related papers (2024-10-02T15:19:31Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - DNeRV: Modeling Inherent Dynamics via Difference Neural Representation
for Videos [53.077189668346705]
Difference Representation for Videos (eRV)
We analyze this from the perspective of limitation function fitting and the importance of frame difference.
DNeRV achieves competitive results against the state-of-the-art neural compression approaches.
arXiv Detail & Related papers (2023-04-13T13:53:49Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - FFNeRV: Flow-Guided Frame-Wise Neural Representations for Videos [5.958701846880935]
We propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos.
With model compression techniques, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
arXiv Detail & Related papers (2022-12-23T12:51:42Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Hierarchical Multimodal Transformer to Summarize Videos [103.47766795086206]
Motivated by the great success of transformer and the natural structure of video (frame-shot-video), a hierarchical transformer is developed for video summarization.
To integrate the two kinds of information, they are encoded in a two-stream scheme, and a multimodal fusion mechanism is developed based on the hierarchical transformer.
Practically, extensive experiments show that HMT surpasses most of the traditional, RNN-based and attention-based video summarization methods.
arXiv Detail & Related papers (2021-09-22T07:38:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.