論文の概要: COSMMIC: Comment-Sensitive Multimodal Multilingual Indian Corpus for Summarization and Headline Generation
- arxiv url: http://arxiv.org/abs/2506.15372v1
- Date: Wed, 18 Jun 2025 11:38:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.64277
- Title: COSMMIC: Comment-Sensitive Multimodal Multilingual Indian Corpus for Summarization and Headline Generation
- Title(参考訳): COSMMIC:要約と見出し生成のためのコメント型マルチモーダル多言語インドコーパス
- Authors: Raghvendra Kumar, S. A. Mohammed Salman, Aryan Sahu, Tridib Nandi, Pragathi Y. P., Sriparna Saha, Jose G. Moreno,
- Abstract要約: COSMMICは、9つの主要なインドの言語を特徴とする、コメントに敏感なマルチモーダル、多言語データセットである。
COSMMICは4,959の記事イメージ対と24,484の読者コメントで構成されており、全言語で利用できる。
データセットの有効性を評価するために,LLama3やGPT-4といった最先端言語モデルを用いる。
- 参考スコア(独自算出の注目度): 10.9454163542891
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite progress in comment-aware multimodal and multilingual summarization for English and Chinese, research in Indian languages remains limited. This study addresses this gap by introducing COSMMIC, a pioneering comment-sensitive multimodal, multilingual dataset featuring nine major Indian languages. COSMMIC comprises 4,959 article-image pairs and 24,484 reader comments, with ground-truth summaries available in all included languages. Our approach enhances summaries by integrating reader insights and feedback. We explore summarization and headline generation across four configurations: (1) using article text alone, (2) incorporating user comments, (3) utilizing images, and (4) combining text, comments, and images. To assess the dataset's effectiveness, we employ state-of-the-art language models such as LLama3 and GPT-4. We conduct a comprehensive study to evaluate different component combinations, including identifying supportive comments, filtering out noise using a dedicated comment classifier using IndicBERT, and extracting valuable insights from images with a multilingual CLIP-based classifier. This helps determine the most effective configurations for natural language generation (NLG) tasks. Unlike many existing datasets that are either text-only or lack user comments in multimodal settings, COSMMIC uniquely integrates text, images, and user feedback. This holistic approach bridges gaps in Indian language resources, advancing NLP research and fostering inclusivity.
- Abstract(参考訳): 英語と中国語のマルチモーダルと多言語要約の進歩にもかかわらず、インド語の研究は依然として限られている。
COSMMICは、9つの主要なインドの言語を特徴とする、コメントに敏感な多言語・多言語データセットである。
COSMMICは4,959の記事イメージ対と24,484の読者コメントで構成されており、全言語で利用できる。
我々のアプローチは、読者の洞察とフィードバックを統合することで要約を強化する。
本研究では,(1)記事テキストのみの使用,(2)ユーザコメントの活用,(3)画像の活用,(4)テキスト,コメント,画像の組み合わせ,の4つの構成の要約と見出し生成について検討する。
データセットの有効性を評価するために,LLama3やGPT-4といった最先端言語モデルを用いる。
IndicBERTを用いた専用のコメント分類器を用いてノイズを除去し,多言語CLIPを用いた画像から貴重な洞察を抽出するなど,さまざまなコンポーネントの組み合わせを評価するための総合的研究を行った。
これは自然言語生成(NLG)タスクの最も効果的な構成を決定するのに役立つ。
テキストのみあるいはマルチモーダル設定でユーザコメントを欠いている既存のデータセットとは異なり、COSMMICはテキスト、画像、ユーザフィードバックを独自に統合する。
この全体論的アプローチは、インドの言語資源のギャップを埋め、NLP研究を推進し、傾向を育む。
関連論文リスト
- SwitchLingua: The First Large-Scale Multilingual and Multi-Ethnic Code-Switching Dataset [34.40254709148148]
コードスイッチング(Code-Switching, CS)とは、会話や発話の中で2つ以上の言語を交互に使用する方法である。
この言語現象は、自動音声認識(ASR)システムに課題をもたらす。
textbfSwitchLinguaは、最初の大規模多言語および多民族のコードスイッチングデータセットである。
論文 参考訳(メタデータ) (2025-05-30T05:54:46Z) - COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing [1.3062731746155414]
COMI-lingUAは、ヒンディー語と英語のコード混成データセットとしては最大である。
5つのコアNLPタスクにわたる125K以上の高品質なインスタンスで構成されている。
各インスタンスには3つのバイリンガルアノテーションがアノテートされ、376K以上の専門家アノテーションが生成される。
論文 参考訳(メタデータ) (2025-03-27T16:36:39Z) - Evaluation of Multilingual Image Captioning: How far can we get with CLIP models? [3.902360015414256]
この研究は、多言語設定におけるCLIPScore変種の評価に関連する、いくつかの戦略と広範な実験を提示する。
機械翻訳データを用いたテストでは、多言語CLIPScoreモデルは、異なる言語にわたる人間の判断と高い相関を維持することができる。
論文 参考訳(メタデータ) (2025-02-10T16:00:00Z) - TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINSはText-RichイメージINStructionデータセットである。
39,153の画像、キャプション、102,437の質問が含まれている。
本稿では,画像中のテキスト内容の理解に長けたLanguage-vision Reading Assistant(LaRA)を提案する。
論文 参考訳(メタデータ) (2024-06-10T18:52:37Z) - Parrot: Multilingual Visual Instruction Tuning [66.65963606552839]
既存の手法では、視覚エンコーダを教師付き微調整(SFT)を介してMLLM(Multimodal Large Language Models)と整列させるのが一般的である。
言語レベルでの視覚的トークンアライメントにテキストガイダンスを活用する新しいアプローチであるPARROTを提案する。
我々は6言語、15カテゴリ、12,000の質問からなる新しいベンチマークであるMassive Multilingual Multimodal Benchmark (MMMB)を紹介する。
論文 参考訳(メタデータ) (2024-06-04T17:56:28Z) - Align before Attend: Aligning Visual and Textual Features for Multimodal
Hateful Content Detection [4.997673761305336]
本稿では,マルチモーダルヘイトフルコンテンツ検出のためのコンテキスト認識型アテンションフレームワークを提案する。
Viz.MUTE(Bengali code-mixed)とMultiOFF(英語)の2つのベンチマークヘイトフルミームデータセットに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-02-15T06:34:15Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - GupShup: An Annotated Corpus for Abstractive Summarization of
Open-Domain Code-Switched Conversations [28.693328393260906]
ヒンズー語と英語の会話を要約し,最初の会話要約データセットを開発した。
GupShupはヒンディー語で6,831以上の会話と、ヒンディー語とヒンディー語で対応する人間の注釈付き要約を含んでいる。
我々は,最先端の抽象要約モデルを訓練し,自動計測と人間評価の両方を用いてその性能を報告する。
論文 参考訳(メタデータ) (2021-04-17T15:42:01Z) - A Multi-Perspective Architecture for Semantic Code Search [58.73778219645548]
テキストマッチングのための新しい多言語間ニューラルネットワークを提案する。
CoNaLaデータセットを用いた実験により,提案したモデルでは,従来の手法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-05-06T04:46:11Z) - Knowledge Distillation for Multilingual Unsupervised Neural Machine
Translation [61.88012735215636]
unsupervised neural machine translation (UNMT) は、最近、いくつかの言語対に対して顕著な結果を得た。
UNMTは単一の言語ペア間でのみ翻訳することができ、同時に複数の言語ペアに対して翻訳結果を生成することはできない。
本稿では,1つのエンコーダと1つのデコーダを用いて13言語間を翻訳する簡単な手法を実証的に紹介する。
論文 参考訳(メタデータ) (2020-04-21T17:26:16Z) - Multi-SimLex: A Large-Scale Evaluation of Multilingual and Cross-Lingual
Lexical Semantic Similarity [67.36239720463657]
Multi-SimLexは、12の異なる言語のデータセットをカバーする大規模な語彙リソースと評価ベンチマークである。
各言語データセットは、意味的類似性の語彙的関係に注釈付けされ、1,888のセマンティック・アライメント・コンセプト・ペアを含む。
言語間の概念の整合性のため、66の言語間セマンティック類似性データセットを提供する。
論文 参考訳(メタデータ) (2020-03-10T17:17:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。