Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material
- URL: http://arxiv.org/abs/2506.15442v1
- Date: Wed, 18 Jun 2025 13:14:46 GMT
- Title: Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material
- Authors: Team Hunyuan3D, Shuhui Yang, Mingxin Yang, Yifei Feng, Xin Huang, Sheng Zhang, Zebin He, Di Luo, Haolin Liu, Yunfei Zhao, Qingxiang Lin, Zeqiang Lai, Xianghui Yang, Huiwen Shi, Zibo Zhao, Bowen Zhang, Hongyu Yan, Lifu Wang, Sicong Liu, Jihong Zhang, Meng Chen, Liang Dong, Yiwen Jia, Yulin Cai, Jiaao Yu, Yixuan Tang, Dongyuan Guo, Junlin Yu, Hao Zhang, Zheng Ye, Peng He, Runzhou Wu, Shida Wei, Chao Zhang, Yonghao Tan, Yifu Sun, Lin Niu, Shirui Huang, Bojian Zheng, Shu Liu, Shilin Chen, Xiang Yuan, Xiaofeng Yang, Kai Liu, Jianchen Zhu, Peng Chen, Tian Liu, Di Wang, Yuhong Liu, Linus, Jie Jiang, Jingwei Huang, Chunchao Guo,
- Abstract summary: Hunyuan3D 2.1 is an advanced system for producing high-resolution, textured 3D assets.<n>This tutorial offers a step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance.
- Score: 36.1986525609658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
Related papers
- TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models [69.0220314849478]
TripoSG is a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images.<n>The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images.<n>To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
arXiv Detail & Related papers (2025-02-10T16:07:54Z) - Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation [45.75095673944995]
Hunyuan3D 2.0 is an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets.<n>The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image.<n>The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps.
arXiv Detail & Related papers (2025-01-21T15:16:54Z) - Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework [1.1280113914145702]
This research aims to design and develop a comprehensive and efficient framework for 3D segmentation tasks.<n>The framework integrates Grounding DINO and Segment anything Model, augmented by an enhancement in 2D image rendering via 3D mesh.
arXiv Detail & Related papers (2024-12-09T07:39:39Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - Sherpa3D: Boosting High-Fidelity Text-to-3D Generation via Coarse 3D
Prior [52.44678180286886]
2D diffusion models find a distillation approach that achieves excellent generalization and rich details without any 3D data.
We propose Sherpa3D, a new text-to-3D framework that achieves high-fidelity, generalizability, and geometric consistency simultaneously.
arXiv Detail & Related papers (2023-12-11T18:59:18Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm [111.16358607889609]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.<n>For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
We present Uni3D, a 3D foundation model to explore the unified 3D representation at scale.
Uni3D uses a 2D ViT end-to-end pretrained to align the 3D point cloud features with the image-text aligned features.
We show that the strong Uni3D representation also enables applications such as 3D painting and retrieval in the wild.
arXiv Detail & Related papers (2023-10-10T16:49:21Z) - Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative
Radiance Field [16.15190186574068]
We propose Lift3D, an inverted 2D-to-3D generation framework to achieve the data generation objectives.
By lifting well-disentangled 2D GAN to 3D object NeRF, Lift3D provides explicit 3D information of generated objects.
We evaluate the effectiveness of our framework by augmenting autonomous driving datasets.
arXiv Detail & Related papers (2023-04-07T07:43:02Z) - GET3D: A Generative Model of High Quality 3D Textured Shapes Learned
from Images [72.15855070133425]
We introduce GET3D, a Generative model that directly generates Explicit Textured 3D meshes with complex topology, rich geometric details, and high-fidelity textures.
GET3D is able to generate high-quality 3D textured meshes, ranging from cars, chairs, animals, motorbikes and human characters to buildings.
arXiv Detail & Related papers (2022-09-22T17:16:19Z) - A Convolutional Architecture for 3D Model Embedding [1.3858051019755282]
We propose a deep learning architecture to handle 3D models as an input.
We show that the embedding representation conveys semantic information that helps to deal with the similarity assessment of 3D objects.
arXiv Detail & Related papers (2021-03-05T15:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.