Multimodal Large Language Models for Medical Report Generation via Customized Prompt Tuning
- URL: http://arxiv.org/abs/2506.15477v1
- Date: Wed, 18 Jun 2025 14:09:34 GMT
- Title: Multimodal Large Language Models for Medical Report Generation via Customized Prompt Tuning
- Authors: Chunlei Li, Jingyang Hou, Yilei Shi, Jingliang Hu, Xiao Xiang Zhu, Lichao Mou,
- Abstract summary: We present MRG-LLM, a novel large language model (MLLM) that combines a frozen LLM with a learnable visual encoder.<n>We propose two implementations: prompt-wise and promptbook-wise customization, enabling precise and targeted report generation.
- Score: 20.195025131749944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical report generation from imaging data remains a challenging task in clinical practice. While large language models (LLMs) show great promise in addressing this challenge, their effective integration with medical imaging data still deserves in-depth exploration. In this paper, we present MRG-LLM, a novel multimodal large language model (MLLM) that combines a frozen LLM with a learnable visual encoder and introduces a dynamic prompt customization mechanism. Our key innovation lies in generating instance-specific prompts tailored to individual medical images through conditional affine transformations derived from visual features. We propose two implementations: prompt-wise and promptbook-wise customization, enabling precise and targeted report generation. Extensive experiments on IU X-ray and MIMIC-CXR datasets demonstrate that MRG-LLM achieves state-of-the-art performance in medical report generation. Our code will be made publicly available.
Related papers
- Zeus: Zero-shot LLM Instruction for Union Segmentation in Multimodal Medical Imaging [4.341503087761129]
Conducting multimodal learning involves visual and text modalities shown as a solution, but collecting paired vision-language datasets is expensive and time-consuming.<n>Inspired by the superior ability in numerous cross-modal tasks for Large Language Models (LLMs), we proposed a novel Vision-LLM union framework to address the issues.
arXiv Detail & Related papers (2025-04-09T23:33:35Z) - Reducing Hallucinations of Medical Multimodal Large Language Models with Visual Retrieval-Augmented Generation [15.468023420115431]
We show how MLLMs may be enhanced to support Visual RAG, a retrieval-augmented generation framework.<n>On the MIMIC-CXR chest X-ray report generation and Multicare medical image caption generation datasets, we show that Visual RAG improves the accuracy of entity probing.
arXiv Detail & Related papers (2025-02-20T20:55:34Z) - A Generative Framework for Bidirectional Image-Report Understanding in Chest Radiography [1.2289361708127877]
Multi-Stage Adaptive Vision-Language Tuning (MAViLT) is a novel framework designed to enhance multimodal reasoning and generation for vision-based understanding.<n>MAViLT incorporates a clinical gradient-weighted tokenization process and a hierarchical fine-tuning strategy, enabling it to generate accurate radiology reports, synthesize realistic CXRs from text, and answer vision-based clinical questions.<n>We evaluate MAViLT on two benchmark datasets, MIMIC-CXR and Indiana University CXR, achieving state-of-the-art results across all tasks.
arXiv Detail & Related papers (2025-02-09T15:02:57Z) - Activating Associative Disease-Aware Vision Token Memory for LLM-Based X-ray Report Generation [54.631356899598956]
We propose a novel associative memory-enhanced X-ray report generation model that effectively mimics the process of professional doctors writing medical reports.<n>We employ a visual Hopfield network to establish memory associations for disease-related tokens, and a report Hopfield network to retrieve report memory information.
arXiv Detail & Related papers (2025-01-07T01:19:48Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Large Language Models for Multimodal Deformable Image Registration [50.91473745610945]
We propose a novel coarse-to-fine MDIR framework,LLM-Morph, for aligning the deep features from different modal medical images.
Specifically, we first utilize a CNN encoder to extract deep visual features from cross-modal image pairs, then we use the first adapter to adjust these tokens, and use LoRA in pre-trained LLMs to fine-tune their weights.
Third, for the alignment of tokens, we utilize other four adapters to transform the LLM-encoded tokens into multi-scale visual features, generating multi-scale deformation fields and facilitating the coarse-to-fine MDIR task
arXiv Detail & Related papers (2024-08-20T09:58:30Z) - R2GenCSR: Retrieving Context Samples for Large Language Model based X-ray Medical Report Generation [7.4871243017824165]
This paper proposes a novel context-guided efficient X-ray medical report generation framework.
Specifically, we introduce the Mamba as the vision backbone with linear complexity, and the performance obtained is comparable to that of the strong Transformer model.
arXiv Detail & Related papers (2024-08-19T07:15:11Z) - MedXChat: A Unified Multimodal Large Language Model Framework towards CXRs Understanding and Generation [28.497591315598402]
Multimodal Large Language Models (MLLMs) have shown success in various general image processing tasks.
This study investigates the potential of MLLMs in improving the understanding and generation of Chest X-Rays (CXRs)
arXiv Detail & Related papers (2023-12-04T06:40:12Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models [72.8965643836841]
We introduce XrayGPT, a novel conversational medical vision-language model.<n>It can analyze and answer open-ended questions about chest radiographs.<n>We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
The scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks.
We propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs) in computer vision and natural language processing.
arXiv Detail & Related papers (2023-06-09T03:02:36Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.