A Generative Framework for Bidirectional Image-Report Understanding in Chest Radiography
- URL: http://arxiv.org/abs/2502.05926v1
- Date: Sun, 09 Feb 2025 15:02:57 GMT
- Title: A Generative Framework for Bidirectional Image-Report Understanding in Chest Radiography
- Authors: Nicholas Evans, Stephen Baker, Miles Reed,
- Abstract summary: Multi-Stage Adaptive Vision-Language Tuning (MAViLT) is a novel framework designed to enhance multimodal reasoning and generation for vision-based understanding.
MAViLT incorporates a clinical gradient-weighted tokenization process and a hierarchical fine-tuning strategy, enabling it to generate accurate radiology reports, synthesize realistic CXRs from text, and answer vision-based clinical questions.
We evaluate MAViLT on two benchmark datasets, MIMIC-CXR and Indiana University CXR, achieving state-of-the-art results across all tasks.
- Score: 1.2289361708127877
- License:
- Abstract: The rapid advancements in large language models (LLMs) have unlocked their potential for multimodal tasks, where text and visual data are processed jointly. However, applying LLMs to medical imaging, particularly for chest X-rays (CXR), poses significant challenges due to the need for precise visual-textual alignment and the preservation of critical diagnostic details. In this paper, we propose Multi-Stage Adaptive Vision-Language Tuning (MAViLT), a novel framework designed to enhance multimodal reasoning and generation for CXR understanding. MAViLT incorporates a clinical gradient-weighted tokenization process and a hierarchical fine-tuning strategy, enabling it to generate accurate radiology reports, synthesize realistic CXRs from text, and answer vision-based clinical questions. We evaluate MAViLT on two benchmark datasets, MIMIC-CXR and Indiana University CXR, achieving state-of-the-art results across all tasks. Human evaluations further validate the clinical relevance and utility of MAViLT, making it a robust tool for real-world medical applications. This work demonstrates the feasibility of leveraging LLMs for multimodal medical imaging while addressing key challenges in vision-language integration.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - M4CXR: Exploring Multi-task Potentials of Multi-modal Large Language Models for Chest X-ray Interpretation [0.0]
M4CXR is a multi-modal large language model (LLMs) designed to enhance chest X-ray (CXR) interpretation.
The model supports multiple tasks such as medical report generation (MRG), visual grounding, and visual question answering (VQA)
M4CXR achieves state-of-the-art clinical accuracy in MRG by employing a chain-of-thought prompting strategy.
arXiv Detail & Related papers (2024-08-29T02:12:58Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
We propose D-Rax -- a domain-specific, conversational, radiologic assistance tool.
We enhance the conversational analysis of chest X-ray (CXR) images to support radiological reporting.
We observe statistically significant improvement in responses when evaluated for both open and close-ended conversations.
arXiv Detail & Related papers (2024-07-02T18:43:10Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Eye-gaze Guided Multi-modal Alignment for Medical Representation Learning [65.54680361074882]
Eye-gaze Guided Multi-modal Alignment (EGMA) framework harnesses eye-gaze data for better alignment of medical visual and textual features.
We conduct downstream tasks of image classification and image-text retrieval on four medical datasets.
arXiv Detail & Related papers (2024-03-19T03:59:14Z) - MedXChat: A Unified Multimodal Large Language Model Framework towards CXRs Understanding and Generation [28.497591315598402]
Multimodal Large Language Models (MLLMs) have shown success in various general image processing tasks.
This study investigates the potential of MLLMs in improving the understanding and generation of Chest X-Rays (CXRs)
arXiv Detail & Related papers (2023-12-04T06:40:12Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Multi-task Paired Masking with Alignment Modeling for Medical
Vision-Language Pre-training [55.56609500764344]
We propose a unified framework based on Multi-task Paired Masking with Alignment (MPMA) to integrate the cross-modal alignment task into the joint image-text reconstruction framework.
We also introduce a Memory-Augmented Cross-Modal Fusion (MA-CMF) module to fully integrate visual information to assist report reconstruction.
arXiv Detail & Related papers (2023-05-13T13:53:48Z) - Multi-modal Understanding and Generation for Medical Images and Text via
Vision-Language Pre-Training [5.119201893752376]
We propose Medical Vision Language Learner (MedViLL) which adopts a Transformer-based architecture combined with a novel multimodal attention masking scheme.
We empirically demonstrate the superior downstream task performance of MedViLL against various baselines including task-specific architectures.
arXiv Detail & Related papers (2021-05-24T15:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.