LoX: Low-Rank Extrapolation Robustifies LLM Safety Against Fine-tuning
- URL: http://arxiv.org/abs/2506.15606v2
- Date: Wed, 23 Jul 2025 16:48:01 GMT
- Title: LoX: Low-Rank Extrapolation Robustifies LLM Safety Against Fine-tuning
- Authors: Gabriel J. Perin, Runjin Chen, Xuxi Chen, Nina S. T. Hirata, Zhangyang Wang, Junyuan Hong,
- Abstract summary: Low-Rank Extrapolation (LoX) improves robustness against benign and malicious fine-tuning attacks.<n>LoX leads to 11% to 54% absolute reductions in attack success rates.
- Score: 61.594212398272184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have become indispensable in real-world applications. However, their widespread adoption raises significant safety concerns, particularly in responding to socially harmful questions. Despite substantial efforts to improve model safety through alignment, aligned models can still have their safety protections undermined by subsequent fine-tuning - even when the additional training data appears benign. In this paper, we empirically demonstrate that this vulnerability stems from the sensitivity of safety-critical low-rank subspaces in LLM parameters to fine-tuning. Building on this insight, we propose a novel training-free method, termed Low-Rank Extrapolation (LoX), to enhance safety robustness by extrapolating the safety subspace of an aligned LLM. Our experimental results confirm the effectiveness of LoX, demonstrating significant improvements in robustness against both benign and malicious fine-tuning attacks while preserving the model's adaptability to new tasks. For instance, LoX leads to 11% to 54% absolute reductions in attack success rates (ASR) facing benign or malicious fine-tuning attacks. By investigating the ASR landscape of parameters, we attribute the success of LoX to that the extrapolation moves LLM parameters to a flatter zone, thereby less sensitive to perturbations. The code is available at github.com/VITA-Group/LoX.
Related papers
- LoRA is All You Need for Safety Alignment of Reasoning LLMs [14.561805865086948]
We show that using LoRA for SFT on refusal datasets effectively aligns the model for safety without harming its reasoning capabilities.<n>This is because restricting the safety weight updates to a low-rank space minimizes the interference with the reasoning weights.
arXiv Detail & Related papers (2025-07-22T23:25:16Z) - Safe Pruning LoRA: Robust Distance-Guided Pruning for Safety Alignment in Adaptation of LLMs [4.580092836731863]
Fine-tuning Large Language Models (LLMs) with Low-Rank Adaptation (LoRA) enhances adaptability while reducing computational costs.<n>Existing safety alignment methods struggle to capture complex parameter shifts, leading to suboptimal safety-utility trade-offs.<n>We propose Safe Pruning LoRA (SPLoRA), a novel pruning-based approach that selectively removes LoRA layers that weaken safety alignment.
arXiv Detail & Related papers (2025-06-21T14:59:54Z) - Reshaping Representation Space to Balance the Safety and Over-rejection in Large Audio Language Models [50.89022445197919]
Large Audio Language Models (LALMs) have extended the capabilities of Large Language Models (LLMs)<n>Recent research has revealed that LALMs remain vulnerable to harmful queries due to insufficient safety-alignment.
arXiv Detail & Related papers (2025-05-26T08:25:25Z) - Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging [43.44112117935541]
Fine-tuning large language models (LLMs) for downstream tasks often leads to safety degradation in safety-aligned LLMs.<n>We propose a method that maintains the inherent safety of LLMs while enhancing their downstream task performance.
arXiv Detail & Related papers (2024-12-27T08:03:22Z) - Safety Layers in Aligned Large Language Models: The Key to LLM Security [43.805905164456846]
Internal parameters in aligned LLMs can be vulnerable to security degradation when subjected to fine-tuning attacks.<n>Our work uncovers the mechanism behind security in aligned LLMs at the parameter level, identifying a small set of contiguous layers in the middle of the model.<n>We propose a novel fine-tuning approach, Safely Partial- Fine-Tuning (SPPFT), that fixes the gradient of the safety layers during fine-tuning to address the security degradation.
arXiv Detail & Related papers (2024-08-30T04:35:59Z) - SCANS: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large Language Models (LLMs) to defend threats from malicious instructions.<n>Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.<n>We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
We introduce a novel approach, Decoupled Refusal Training (DeRTa), designed to empower LLMs to refuse compliance to harmful prompts at any response position.<n>DeRTa incorporates two novel components: (1) Maximum Likelihood Estimation with Harmful Response Prefix, which trains models to recognize and avoid unsafe content by appending a segment of harmful response to the beginning of a safe response, and (2) Reinforced Transition Optimization (RTO), which equips models with the ability to transition from potential harm to safety refusal consistently throughout the harmful response sequence.
arXiv Detail & Related papers (2024-07-12T09:36:33Z) - Navigating the Safety Landscape: Measuring Risks in Finetuning Large Language Models [65.06446825020578]
Safety alignment is crucial to ensure that large language models (LLMs) behave in ways that align with human preferences and prevent harmful actions during inference.
We aim to measure the risks in finetuning LLMs through navigating the LLM safety landscape.
arXiv Detail & Related papers (2024-05-27T17:31:56Z) - Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications [69.13807233595455]
Large language models (LLMs) show inherent brittleness in their safety mechanisms.
This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications.
We show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted.
arXiv Detail & Related papers (2024-02-07T18:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.