Demystifying the Visual Quality Paradox in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2506.15645v1
- Date: Wed, 18 Jun 2025 17:14:07 GMT
- Title: Demystifying the Visual Quality Paradox in Multimodal Large Language Models
- Authors: Shuo Xing, Lanqing Guo, Hongyuan Hua, Seoyoung Lee, Peiran Li, Yufei Wang, Zhangyang Wang, Zhengzhong Tu,
- Abstract summary: Recent Multimodal Large Language Models (MLLMs) excel on benchmark vision-language tasks, yet little is known about how input visual quality shapes their responses.<n>We conduct the first systematic study spanning leading MLLMs and a suite of vision-language benchmarks.<n>We uncover a visual-quality paradox: model, task, and even individual-instance performance can improve when images deviate from human-perceived fidelity.
- Score: 49.154146792279946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Multimodal Large Language Models (MLLMs) excel on benchmark vision-language tasks, yet little is known about how input visual quality shapes their responses. Does higher perceptual quality of images already translate to better MLLM understanding? We conduct the first systematic study spanning leading MLLMs and a suite of vision-language benchmarks, applying controlled degradations and stylistic shifts to each image. Surprisingly, we uncover a visual-quality paradox: model, task, and even individual-instance performance can improve when images deviate from human-perceived fidelity. Off-the-shelf restoration pipelines fail to reconcile these idiosyncratic preferences. To close the gap, we introduce Visual-Quality Test-Time Tuning (VQ-TTT)-a lightweight adaptation module that: (1) inserts a learnable, low-rank kernel before the frozen vision encoder to modulate frequency content; and (2) fine-tunes only shallow vision-encoder layers via LoRA. VQ-TTT dynamically adjusts each input image in a single forward pass, aligning it with task-specific model preferences. Across the evaluated MLLMs and all datasets, VQ-TTT lifts significant average accuracy, with no external models, cached features, or extra training data. These findings redefine ``better'' visual inputs for MLLMs and highlight the need for adaptive, rather than universally ``clean'', imagery, in the new era of AI being the main data customer.
Related papers
- Multimodal LLMs as Customized Reward Models for Text-to-Image Generation [60.164968941945645]
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives.<n>LLaVA-Reward directly utilizes the hidden states of multimodal large language models (MLLMs)<n>We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking.
arXiv Detail & Related papers (2025-07-28T23:52:53Z) - HoVLE: Unleashing the Power of Monolithic Vision-Language Models with Holistic Vision-Language Embedding [91.0552157725366]
This paper presents a novel high-performance monolithic VLM named HoVLE.<n>It converts visual and textual inputs into a shared space, allowing LLMs to process images in the same way as texts.<n>Our experiments show that HoVLE achieves performance close to leading compositional models on various benchmarks.
arXiv Detail & Related papers (2024-12-20T18:59:59Z) - TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning [54.033346088090674]
We introduce TWIST & SCOUT, a framework that equips pre-trained MLLMs with visual grounding ability.<n>To fine-tune the model effectively, we generate a high-quality synthetic dataset we call SCOUT.<n>This dataset provides rich supervision signals, describing a step-by-step multimodal reasoning process.
arXiv Detail & Related papers (2024-10-14T13:35:47Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
We propose Leopard, an MLLM tailored for handling vision-language tasks involving multiple text-rich images.<n>First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios.<n>Second, we proposed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length.
arXiv Detail & Related papers (2024-10-02T16:55:01Z) - Q-Bench+: A Benchmark for Multi-modal Foundation Models on Low-level Vision from Single Images to Pairs [71.07108539262721]
We design benchmark settings to emulate human language responses related to low-level vision.
We extend the low-level perception-related question-answering and description evaluations of MLLMs from single images to image pairs.
We demonstrate that several MLLMs have decent low-level visual competencies on single images, but only GPT-4V exhibits higher accuracy on pairwise comparisons than humans.
arXiv Detail & Related papers (2024-02-11T06:44:11Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
We propose a vision-language masked autoencoder framework (VLMAE) for vision-language pre-training.
VLMAE employs visual generative learning, facilitating the model to acquire fine-grained and unbiased features.
arXiv Detail & Related papers (2022-08-19T14:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.