論文の概要: Quantum Fisher-Preconditioned Reinforcement Learning: From Single-Qubit Control to Rayleigh-Fading Link Adaptation
- arxiv url: http://arxiv.org/abs/2506.15753v1
- Date: Wed, 18 Jun 2025 07:20:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:04.764658
- Title: Quantum Fisher-Preconditioned Reinforcement Learning: From Single-Qubit Control to Rayleigh-Fading Link Adaptation
- Title(参考訳): 量子フィッシャー条件強化学習:単一ビット制御からレイリーフェイディングリンク適応へ
- Authors: Oluwaseyi Giwa, Muhammad Ahmed Mohsin, Muhammad Ali Jamshed,
- Abstract要約: 本稿では、Tikhonov正則化を用いた逆量子フィッシャー情報を用いて、ポリシー更新を白くするリンク適応のための勾配に基づくアルゴリズムを提案する。
QはREINFORCEの4倍の速度で収束し、不確実性の下で1dBのゲインを維持する。
ノイズの高い100エピソードで90%のリターンに達し、スケーラブルな量子強化学習のための完全なQFIベースのプレコンディショニングの利点を示している。
- 参考スコア(独自算出の注目度): 1.5166632901697499
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this letter, we propose Quantum-Preconditioned Policy Gradient (QPPG), a natural gradient-based algorithm for link adaptation that whitens policy updates using the full inverse quantum Fisher information with Tikhonov regularization. QPPG bridges classical and quantum geometry, achieving stable learning even under noise. Evaluated on classical and quantum environments, including noisy single-qubit Gym tasks and Rayleigh-fading channels, QPPG converges 4 times faster than REINFORCE and sustains a 1 dB gain under uncertainty. It reaches a 90 percent return in one hundred episodes with high noise robustness, showcasing the advantages of full QFI-based preconditioning for scalable quantum reinforcement learning.
- Abstract(参考訳): 本稿では,Tikhonov正則化を用いた逆量子フィッシャー情報を用いてポリシー更新を行う,リンク適応のための自然な勾配に基づくアルゴリズムであるQuantum-Preconditioned Policy Gradient (QPPG)を提案する。
QPPGは古典的および量子幾何学をブリッジし、ノイズの下でも安定した学習を実現する。
ノイズの多い単一量子ビットのGymタスクやRayleigh-fadingチャネルを含む古典的および量子環境において評価され、QPPGはREINFORCEの4倍の速度で収束し、不確実性の下で1dBのゲインを維持する。
100回で90%のリターンを達成し、ノイズの堅牢性が高く、スケーラブルな量子強化学習のための完全なQFIベースのプレコンディショニングの利点を示している。
関連論文リスト
- Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
ノイズは、信頼できる量子アルゴリズムを達成するための大きな障害である。
本稿では,パラメータ化量子回路分類器のロバスト性を高めるための雑音耐性学習理論とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-24T02:51:34Z) - Accelerating Quantum Reinforcement Learning with a Quantum Natural Policy Gradient Based Approach [36.05085942729295]
本稿では、古典的なNPG推定器で使用されるランダムサンプリングを決定論的勾配推定手法で置き換える量子自然ポリシー勾配(QNPG)アルゴリズムを提案する。
提案したQNPGアルゴリズムは、量子オラクルへのクエリに対する$tildemathcalO(epsilon-1.5)$のサンプル複雑性を達成し、マルコフ決定プロセス(MDP)へのクエリに対する$tildemathcalO(epsilon-2)$の古典的な下界を大幅に改善する。
論文 参考訳(メタデータ) (2025-01-27T17:38:30Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
本稿では,量子振幅推定のための雑音対応ベイズアルゴリズムであるBAEを紹介する。
我々は,BAEがハイゼンベルク限界推定を達成し,他の手法と比較した。
論文 参考訳(メタデータ) (2024-12-05T18:09:41Z) - Robustness and Generalization in Quantum Reinforcement Learning via Lipschitz Regularization [2.8445375187526154]
本稿では、RegQPGアルゴリズムと呼ばれる量子ポリシー勾配アプローチの正規化バージョンを提案する。
本稿では、RegQPGによるトレーニングにより、その結果のロバスト性や一般化が向上することを示す。
論文 参考訳(メタデータ) (2024-10-28T15:20:35Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Optimizing Quantum Federated Learning Based on Federated Quantum Natural
Gradient Descent [17.05322956052278]
本稿では、FQNGD(Federated Quantum Natural descent)という効率的な最適化アルゴリズムを提案する。
アダムやアダグラードのような勾配降下法と比較して、FQNGDアルゴリズムは収束するQFLのトレーニングをはるかに少なくする。
手書き桁分類データセットの実験は、QFLフレームワークにおけるFQNGDの有効性を正当化するものである。
論文 参考訳(メタデータ) (2023-02-27T11:34:16Z) - QuantumNAS: Noise-Adaptive Search for Robust Quantum Circuits [26.130594925642143]
ノイズノイズは、NISQ(Noisy Intermediate-Scale Quantum)コンピュータにおける鍵となる課題である。
可変回路と量子ビットマッピングのノイズ適応型共同研究のための,最初の包括的なフレームワークであるQuantumNASを提案し,実験的に実装した。
QMLタスクでは、QuantumNASは95%以上の2クラス、85%の4クラス、実際の量子コンピュータ上での10クラスの分類精度を初めて証明した。
論文 参考訳(メタデータ) (2021-07-22T17:58:13Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
本稿では,古典光とQKD信号の共伝搬のためのアップコンバージョン支援受信機に基づく新しい手法を提案し,実証する。
提案手法は,従来の受信機に比べて高い耐雑音性を示し,従来の4dB高電力条件下での秘密鍵の分配を可能にする。
論文 参考訳(メタデータ) (2021-06-09T13:52:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。