DeepJ: Graph Convolutional Transformers with Differentiable Pooling for Patient Trajectory Modeling
- URL: http://arxiv.org/abs/2506.15809v1
- Date: Wed, 18 Jun 2025 18:45:36 GMT
- Title: DeepJ: Graph Convolutional Transformers with Differentiable Pooling for Patient Trajectory Modeling
- Authors: Deyi Li, Zijun Yao, Muxuan Liang, Mei Liu,
- Abstract summary: We introduce Deep Patient Journey (DeepJ), a novel graph convolutional transformer model with differentiable graph pooling.<n>DeepJ can identify groups of temporally and functionally related medical events, offering valuable insights into key event clusters pertinent to patient outcome prediction.
- Score: 8.305824953620151
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, graph learning has gained significant interest for modeling complex interactions among medical events in structured Electronic Health Record (EHR) data. However, existing graph-based approaches often work in a static manner, either restricting interactions within individual encounters or collapsing all historical encounters into a single snapshot. As a result, when it is necessary to identify meaningful groups of medical events spanning longitudinal encounters, existing methods are inadequate in modeling interactions cross encounters while accounting for temporal dependencies. To address this limitation, we introduce Deep Patient Journey (DeepJ), a novel graph convolutional transformer model with differentiable graph pooling to effectively capture intra-encounter and inter-encounter medical event interactions. DeepJ can identify groups of temporally and functionally related medical events, offering valuable insights into key event clusters pertinent to patient outcome prediction. DeepJ significantly outperformed five state-of-the-art baseline models while enhancing interpretability, demonstrating its potential for improved patient risk stratification.
Related papers
- DynaGraph: Interpretable Multi-Label Prediction from EHRs via Dynamic Graph Learning and Contrastive Augmentation [5.196633071421455]
DynaGraph is an end-to-end interpretable contrastive graph model.<n>We validate our model in four real-world clinical datasets.
arXiv Detail & Related papers (2025-03-28T09:13:30Z) - HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
We propose a novel Historical-Constrained Large Language Models (HC-LLM) framework for Radiology report generation.<n>Our approach extracts both time-shared and time-specific features from longitudinal chest X-rays and diagnostic reports to capture disease progression.<n> Notably, our approach performs well even without historical data during testing and can be easily adapted to other multimodal large models.
arXiv Detail & Related papers (2024-12-15T06:04:16Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Predictive Modeling with Temporal Graphical Representation on Electronic Health Records [8.996666837088311]
An effective representation of a patient's EHR should encompass both the temporal relationships between historical visits and medical events.
We model a patient's EHR as a novel temporal heterogeneous graph.
It propagates structured information from medical event nodes to visit nodes and utilizes time-aware visit nodes to capture changes in the patient's health status.
arXiv Detail & Related papers (2024-05-07T02:05:30Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - Self-explaining Hierarchical Model for Intraoperative Time Series [6.877686657275981]
We propose a hierarchical model combining the strength of both attention and recurrent models for intraoperative time series.
Experiments on a large dataset of 111,888 surgeries with multiple outcomes and an external high-resolution ICU dataset show that our model can achieve strong predictive performance.
arXiv Detail & Related papers (2022-10-10T03:24:18Z) - Brain dynamics via Cumulative Auto-Regressive Self-Attention [0.0]
We present a model that is considerably shallow than deep graph neural networks (GNNs)
Our model learns the autoregressive structure of individual time series and estimates directed connectivity graphs.
We demonstrate our results on a functional neuroimaging dataset classifying schizophrenia patients and controls.
arXiv Detail & Related papers (2021-11-01T21:50:35Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.