In-field Calibration of Low-Cost Sensors through XGBoost $\&$ Aggregate Sensor Data
- URL: http://arxiv.org/abs/2506.15840v1
- Date: Wed, 18 Jun 2025 19:40:32 GMT
- Title: In-field Calibration of Low-Cost Sensors through XGBoost $\&$ Aggregate Sensor Data
- Authors: Kevin Yin, Julia Gersey, Pei Zhang,
- Abstract summary: Precision comes at a cost: highly accurate sensors are expensive, limiting the spatial deployments and thus their coverage.<n>Low-cost sensors have become popular, though they are prone to drift caused by environmental sensitivity and manufacturing variability.<n>This paper presents a model for in-field sensor calibration using XGBoost ensemble learning to consolidate data from neighboring sensors.
- Score: 2.7832348184252056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective large-scale air quality monitoring necessitates distributed sensing due to the pervasive and harmful nature of particulate matter (PM), particularly in urban environments. However, precision comes at a cost: highly accurate sensors are expensive, limiting the spatial deployments and thus their coverage. As a result, low-cost sensors have become popular, though they are prone to drift caused by environmental sensitivity and manufacturing variability. This paper presents a model for in-field sensor calibration using XGBoost ensemble learning to consolidate data from neighboring sensors. This approach reduces dependence on the presumed accuracy of individual sensors and improves generalization across different locations.
Related papers
- SensorLM: Learning the Language of Wearable Sensors [50.95988682423808]
We present SensorLM, a family of sensor-language foundation models that enable wearable sensor data understanding with natural language.<n>We introduce a hierarchical caption generation pipeline designed to capture statistical, structural, and semantic information from sensor data.<n>This approach enabled the curation of the largest sensor-language dataset to date, comprising over 59.7 million hours of data from more than 103,000 people.
arXiv Detail & Related papers (2025-06-10T17:13:09Z) - MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Air Quality Sensor Fusion [6.963971634605796]
We propose a novel unsupervised domain adaptation (UDA) method specifically tailored for regression tasks on graph-structured data.
We incorporate spatial-temporal graph neural networks (STGNNs) to model the relationships between sensors.
Our approach allows low-cost IoT sensors to learn calibration parameters from expensive reference sensors.
arXiv Detail & Related papers (2024-11-11T12:20:57Z) - SOAC: Spatio-Temporal Overlap-Aware Multi-Sensor Calibration using Neural Radiance Fields [10.958143040692141]
In rapidly-evolving domains such as autonomous driving, the use of multiple sensors with different modalities is crucial to ensure operational precision and stability.
To correctly exploit the provided information by each sensor in a single common frame, it is essential for these sensors to be accurately calibrated.
We leverage the ability of Neural Radiance Fields to represent different modalities in a common representation.
arXiv Detail & Related papers (2023-11-27T13:25:47Z) - Spatial-Temporal Graph Attention Fuser for Calibration in IoT Air
Pollution Monitoring Systems [8.997596859735516]
We propose a novel approach to enhance the calibration process by fusing data from sensor arrays.
We demonstrate the effectiveness of our approach in significantly improving the calibration accuracy of sensors in IoT air pollution monitoring platforms.
arXiv Detail & Related papers (2023-09-08T12:04:47Z) - Detection of Sensor-To-Sensor Variations using Explainable AI [2.2956649873563952]
chemi-resistive gas sensing devices are plagued by issues of sensor variations during manufacturing.
This study proposes a novel approach for detecting sensor-to-sensor variations in sensing devices using the explainable AI (XAI) method of SHapley Additive exPlanations (SHAP)
The methodology is tested using artificial and realistic Ozone concentration profiles to train a Gated Recurrent Unit (GRU) model.
arXiv Detail & Related papers (2023-06-19T11:00:54Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Modelling calibration uncertainty in networks of environmental sensors [2.016542873726103]
Networks of low-cost sensors are becoming ubiquitous, but often suffer from low accuracies and drift.
We propose a variational approach to model the calibration across the network of sensors.
We demonstrate the approach on both synthetic and real air pollution data, and find it can perform better than the state of the art.
arXiv Detail & Related papers (2022-05-04T10:38:45Z) - Sensor Sampling Trade-Offs for Air Quality Monitoring With Low-Cost
Sensors [0.1957338076370071]
We show the impact of the data sampling strategy in the calibration of tropospheric ozone, nitrogen dioxide and nitrogen monoxide low-cost sensors.
Specifically, we show how a sampling strategy that minimizes the duty cycle of the sensing subsystem can reduce power consumption while maintaining data quality.
arXiv Detail & Related papers (2021-12-14T11:05:55Z) - Bandit Quickest Changepoint Detection [55.855465482260165]
Continuous monitoring of every sensor can be expensive due to resource constraints.
We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions.
We propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions.
arXiv Detail & Related papers (2021-07-22T07:25:35Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.