Uncertainty Estimation by Human Perception versus Neural Models
- URL: http://arxiv.org/abs/2506.15850v1
- Date: Wed, 18 Jun 2025 20:00:20 GMT
- Title: Uncertainty Estimation by Human Perception versus Neural Models
- Authors: Pedro Mendes, Paolo Romano, David Garlan,
- Abstract summary: Modern neural networks (NNs) often achieve high predictive accuracy but remain poorly calibrated.<n>We investigate how human uncertainty compares to uncertainty estimated by NNs.
- Score: 7.702016079410588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern neural networks (NNs) often achieve high predictive accuracy but remain poorly calibrated, producing overconfident predictions even when wrong. This miscalibration poses serious challenges in applications where reliable uncertainty estimates are critical. In this work, we investigate how human perceptual uncertainty compares to uncertainty estimated by NNs. Using three vision benchmarks annotated with both human disagreement and crowdsourced confidence, we assess the correlation between model-predicted uncertainty and human-perceived uncertainty. Our results show that current methods only weakly align with human intuition, with correlations varying significantly across tasks and uncertainty metrics. Notably, we find that incorporating human-derived soft labels into the training process can improve calibration without compromising accuracy. These findings reveal a persistent gap between model and human uncertainty and highlight the potential of leveraging human insights to guide the development of more trustworthy AI systems.
Related papers
- Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.<n>We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Training aims to enhance the ability of neural classifiers to estimate their uncertainty correctly.
The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted.
We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings.
arXiv Detail & Related papers (2024-05-02T11:48:14Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
Optimization [11.456242421204298]
In a well-calibrated model, uncertainty estimates should perfectly correlate with model error.
We propose a novel error aligned uncertainty optimization method and introduce a trainable loss function to guide the models to yield good quality uncertainty estimates aligning with the model error.
We demonstrate that our method improves average displacement error by 1.69% and 4.69%, and the uncertainty correlation with model error by 17.22% and 19.13% as quantified by Pearson correlation coefficient on two state-of-the-art baselines.
arXiv Detail & Related papers (2022-12-09T12:33:26Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Predictive Process Monitoring [0.114219428942199]
We distinguish two types of learnable uncertainty: model uncertainty due to a lack of training data and noise-induced observational uncertainty.
Our contribution is to apply these uncertainty concepts to predictive process monitoring tasks to train uncertainty-based models to predict the remaining time and outcomes.
arXiv Detail & Related papers (2022-06-13T17:05:27Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes [0.15229257192293202]
This paper is the first to apply these techniques to predictive process monitoring.
We found that they contribute towards more accurate predictions and work quickly.
This leads to many interesting applications, enables an earlier adoption of prediction systems with smaller datasets and fosters a better cooperation with humans.
arXiv Detail & Related papers (2021-05-12T10:18:57Z) - Accurate and Reliable Forecasting using Stochastic Differential
Equations [48.21369419647511]
It is critical yet challenging for deep learning models to properly characterize uncertainty that is pervasive in real-world environments.
This paper develops SDE-HNN to characterize the interaction between the predictive mean and variance of HNNs for accurate and reliable regression.
Experiments on the challenging datasets show that our method significantly outperforms the state-of-the-art baselines in terms of both predictive performance and uncertainty quantification.
arXiv Detail & Related papers (2021-03-28T04:18:11Z) - STUaNet: Understanding uncertainty in spatiotemporal collective human
mobility [11.436035608461966]
We propose an uncertainty learning mechanism to simultaneously estimate internal data quality and external uncertainty regarding various contextual interactions.
We show that our proposed model is superior in terms of both forecasting and uncertainty quantification.
arXiv Detail & Related papers (2021-02-09T01:43:27Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.