Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes
- URL: http://arxiv.org/abs/2105.05559v1
- Date: Wed, 12 May 2021 10:18:57 GMT
- Title: Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes
- Authors: Hans Weytjens and Jochen De Weerdt
- Abstract summary: This paper is the first to apply these techniques to predictive process monitoring.
We found that they contribute towards more accurate predictions and work quickly.
This leads to many interesting applications, enables an earlier adoption of prediction systems with smaller datasets and fosters a better cooperation with humans.
- Score: 0.15229257192293202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks will always make a prediction, even when
completely uncertain and regardless of the consequences. This obliviousness of
uncertainty is a major obstacle towards their adoption in practice. Techniques
exist, however, to estimate the two major types of uncertainty: model
uncertainty and observation noise in the data. Bayesian neural networks are
theoretically well-founded models that can learn the model uncertainty of their
predictions. Minor modifications to these models and their loss functions allow
learning the observation noise for individual samples as well. This paper is
the first to apply these techniques to predictive process monitoring. We found
that they contribute towards more accurate predictions and work quickly.
However, their main benefit resides with the uncertainty estimates themselves
that allow the separation of higher-quality from lower-quality predictions and
the building of confidence intervals. This leads to many interesting
applications, enables an earlier adoption of prediction systems with smaller
datasets and fosters a better cooperation with humans.
Related papers
- Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Predictive Process Monitoring [0.114219428942199]
We distinguish two types of learnable uncertainty: model uncertainty due to a lack of training data and noise-induced observational uncertainty.
Our contribution is to apply these uncertainty concepts to predictive process monitoring tasks to train uncertainty-based models to predict the remaining time and outcomes.
arXiv Detail & Related papers (2022-06-13T17:05:27Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
We propose to explicitly train the uncertainty predictor where we are not given data to make it reliable.
As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space.
With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks.
arXiv Detail & Related papers (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
We propose Deep Kernel Accelerated Failure Time models for the time-to-event prediction task.
Our model shows better point estimate performance than recurrent neural network based baselines in experiments on two real-world datasets.
arXiv Detail & Related papers (2021-07-26T14:55:02Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Predictive Business Process Monitoring via Generative Adversarial Nets:
The Case of Next Event Prediction [0.026249027950824504]
This paper proposes a novel adversarial training framework to address the problem of next event prediction.
It works by putting one neural network against the other in a two-player game which leads to predictions that are indistinguishable from the ground truth.
It systematically outperforms all baselines both in terms of accuracy and earliness of the prediction, despite using a simple network architecture and a naive feature encoding.
arXiv Detail & Related papers (2020-03-25T08:31:28Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.