AutoHFormer: Efficient Hierarchical Autoregressive Transformer for Time Series Prediction
- URL: http://arxiv.org/abs/2506.16001v1
- Date: Thu, 19 Jun 2025 03:47:04 GMT
- Title: AutoHFormer: Efficient Hierarchical Autoregressive Transformer for Time Series Prediction
- Authors: Qianru Zhang, Honggang Wen, Ming Li, Dong Huang, Siu-Ming Yiu, Christian S. Jensen, Pietro Liò,
- Abstract summary: Time series forecasting requires architectures that simultaneously achieve three competing objectives.<n>We introduce AutoHFormer, a hierarchical autoregressive transformer that addresses these challenges.<n> Comprehensive experiments demonstrate that AutoHFormer 10.76X faster training and 6.06X memory reduction compared to PatchTST on P08.
- Score: 36.239648954658534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting requires architectures that simultaneously achieve three competing objectives: (1) strict temporal causality for reliable predictions, (2) sub-quadratic complexity for practical scalability, and (3) multi-scale pattern recognition for accurate long-horizon forecasting. We introduce AutoHFormer, a hierarchical autoregressive transformer that addresses these challenges through three key innovations: 1) Hierarchical Temporal Modeling: Our architecture decomposes predictions into segment-level blocks processed in parallel, followed by intra-segment sequential refinement. This dual-scale approach maintains temporal coherence while enabling efficient computation. 2) Dynamic Windowed Attention: The attention mechanism employs learnable causal windows with exponential decay, reducing complexity while preserving precise temporal relationships. This design avoids both the anti-causal violations of standard transformers and the sequential bottlenecks of RNN hybrids. 3) Adaptive Temporal Encoding: a novel position encoding system is adopted to capture time patterns at multiple scales. It combines fixed oscillating patterns for short-term variations with learnable decay rates for long-term trends. Comprehensive experiments demonstrate that AutoHFormer 10.76X faster training and 6.06X memory reduction compared to PatchTST on PEMS08, while maintaining consistent accuracy across 96-720 step horizons in most of cases. These breakthroughs establish new benchmarks for efficient and precise time series modeling. Implementations of our method and all baselines in hierarchical autoregressive mechanism are available at https://github.com/lizzyhku/Autotime.
Related papers
- LMS-AutoTSF: Learnable Multi-Scale Decomposition and Integrated Autocorrelation for Time Series Forecasting [4.075971633195745]
We introduce LMS-AutoTSF, a novel time series forecasting architecture that incorporates autocorrelation.<n>Unlike models that rely on predefined trend and seasonal components, LMS-AutoTSF employs two separate encoders per scale.<n>A key innovation in our approach is the integration of autocorrelation, achieved by computing lagged differences in time steps.
arXiv Detail & Related papers (2024-12-09T09:31:58Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.<n>We introduce a novel quantization framework that includes three strategies.<n>This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis.
Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation.
Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks.
arXiv Detail & Related papers (2024-01-22T13:15:40Z) - PatchMixer: A Patch-Mixing Architecture for Long-Term Time Series Forecasting [3.7244649185886978]
We propose PatchMixer, a novel CNN-based model.
It introduces a permutation-variant convolutional structure to preserve temporal information.
Compared with the state-of-the-art method and the best-performing CNN, PatchMixer yields $3.9%$ and $21.2%$ relative improvements.
arXiv Detail & Related papers (2023-10-01T12:47:59Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting [68.86835407617778]
Autoformer is a novel decomposition architecture with an Auto-Correlation mechanism.
In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a relative improvement on six benchmarks.
arXiv Detail & Related papers (2021-06-24T13:43:43Z) - Informer: Beyond Efficient Transformer for Long Sequence Time-Series
Forecasting [25.417560221400347]
Long sequence time-series forecasting (LSTF) demands a high prediction capacity.
Recent studies have shown the potential of Transformer to increase the prediction capacity.
We design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics.
arXiv Detail & Related papers (2020-12-14T11:43:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.