Data-Agnostic Cardinality Learning from Imperfect Workloads
- URL: http://arxiv.org/abs/2506.16007v1
- Date: Thu, 19 Jun 2025 03:58:31 GMT
- Title: Data-Agnostic Cardinality Learning from Imperfect Workloads
- Authors: Peizhi Wu, Rong Kang, Tieying Zhang, Jianjun Chen, Ryan Marcus, Zachary G. Ives,
- Abstract summary: We present GRASP, a data-agnostic cardinality learning system designed to work under real-world constraints.<n> GRASP generalizes to unseen join templates and is robust to join template imbalance.<n>We demonstrate GRASP consistently outperforms existing query-driven models on imperfect workloads.
- Score: 10.369548494491623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardinality estimation (CardEst) is a critical aspect of query optimization. Traditionally, it leverages statistics built directly over the data. However, organizational policies (e.g., regulatory compliance) may restrict global data access. Fortunately, query-driven cardinality estimation can learn CardEst models using query workloads. However, existing query-driven models often require access to data or summaries for best performance, and they assume perfect training workloads with complete and balanced join templates (or join graphs). Such assumptions rarely hold in real-world scenarios, in which join templates are incomplete and imbalanced. We present GRASP, a data-agnostic cardinality learning system designed to work under these real-world constraints. GRASP's compositional design generalizes to unseen join templates and is robust to join template imbalance. It also introduces a new per-table CardEst model that handles value distribution shifts for range predicates, and a novel learned count sketch model that captures join correlations across base relations. Across three database instances, we demonstrate that GRASP consistently outperforms existing query-driven models on imperfect workloads, both in terms of estimation accuracy and query latency. Remarkably, GRASP achieves performance comparable to, or even surpassing, traditional approaches built over the underlying data on the complex CEB-IMDb-full benchmark -- despite operating without any data access and using only 10% of all possible join templates.
Related papers
- KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language Models [55.39134076436266]
KG-CF is a framework tailored for ranking-based knowledge graph completion tasks.<n> KG-CF leverages LLMs' reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.
arXiv Detail & Related papers (2025-01-06T01:52:15Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - CardBench: A Benchmark for Learned Cardinality Estimation in Relational Databases [17.46316633654637]
Cardinality estimation is crucial for enabling high query performance in databases.
There is no systematic benchmark or datasets which allows researchers to evaluate the progress made by new learned approaches.
We release a benchmark, containing thousands of queries over 20 distinct real-world databases for learned cardinality estimation.
arXiv Detail & Related papers (2024-08-28T23:25:25Z) - GFS: Graph-based Feature Synthesis for Prediction over Relational
Databases [39.975491511390985]
We propose a novel framework called Graph-based Feature Synthesis (GFS)
GFS formulates relational database as a heterogeneous graph database.
In an experiment over four real-world multi-table relational databases, GFS outperforms previous methods designed for relational databases.
arXiv Detail & Related papers (2023-12-04T16:54:40Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQ is a new formulation for scene graph generation that avoids the multi-task learning problem and the entity pair distribution.
We employ a DETR-based encoder-decoder conditional queries to significantly reduce the entity label space as well.
Experimental results show that TraCQ not only outperforms existing single-stage scene graph generation methods, it also beats many state-of-the-art two-stage methods on the Visual Genome dataset.
arXiv Detail & Related papers (2023-06-09T06:02:01Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - Model Joins: Enabling Analytics Over Joins of Absent Big Tables [9.797488793708624]
This work puts forth a framework, Model Join, addressing these challenges.
The framework integrates and joins the per-table models of the absent tables.
The approximation stems from the models, but not from the Model Join framework.
arXiv Detail & Related papers (2022-06-21T14:28:24Z) - Making Table Understanding Work in Practice [9.352813774921655]
We discuss three challenges of deploying table understanding models and propose a framework to address them.
We present SigmaTyper which encapsulates a hybrid model trained on GitTables and integrates a lightweight human-in-the-loop approach to customize the model.
arXiv Detail & Related papers (2021-09-11T03:38:24Z) - Robust Generalization and Safe Query-Specialization in Counterfactual
Learning to Rank [62.28965622396868]
We introduce the Generalization and generalization (GENSPEC) algorithm, a robust feature-based counterfactual Learning to Rank method.
Our results show that GENSPEC leads to optimal performance on queries with sufficient click data, while having robust behavior on queries with little or noisy data.
arXiv Detail & Related papers (2021-02-11T13:17:26Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z) - A Simple Approach to Case-Based Reasoning in Knowledge Bases [56.661396189466664]
We present a surprisingly simple yet accurate approach to reasoning in knowledge graphs (KGs) that requires emphno training, and is reminiscent of case-based reasoning in classical artificial intelligence (AI)
Consider the task of finding a target entity given a source entity and a binary relation.
Our non-parametric approach derives crisp logical rules for each query by finding multiple textitgraph path patterns that connect similar source entities through the given relation.
arXiv Detail & Related papers (2020-06-25T06:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.