Segment Anything for Satellite Imagery: A Strong Baseline and a Regional Dataset for Automatic Field Delineation
- URL: http://arxiv.org/abs/2506.16318v2
- Date: Mon, 23 Jun 2025 10:01:33 GMT
- Title: Segment Anything for Satellite Imagery: A Strong Baseline and a Regional Dataset for Automatic Field Delineation
- Authors: Carmelo Scribano, Elena Govi, Paolo Bertellini, Simone Parisi, Giorgia Franchini, Marko Bertogna,
- Abstract summary: We present a pipeline for field delineation based on the Segment Anything Model (SAM)<n>In addition to using published datasets, we describe a method for acquiring a complementary regional dataset.<n>The new regional dataset, known as ERAS, is now publicly available.
- Score: 3.4965138159482048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate mapping of agricultural field boundaries is essential for the efficient operation of agriculture. Automatic extraction from high-resolution satellite imagery, supported by computer vision techniques, can avoid costly ground surveys. In this paper, we present a pipeline for field delineation based on the Segment Anything Model (SAM), introducing a fine-tuning strategy to adapt SAM to this task. In addition to using published datasets, we describe a method for acquiring a complementary regional dataset that covers areas beyond current sources. Extensive experiments assess segmentation accuracy and evaluate the generalization capabilities. Our approach provides a robust baseline for automated field delineation. The new regional dataset, known as ERAS, is now publicly available.
Related papers
- Geographical Context Matters: Bridging Fine and Coarse Spatial Information to Enhance Continental Land Cover Mapping [2.9212099078191756]
BRIDGE-LC is a novel deep learning framework that integrates multi-scale geospatial information into the land cover classification process.<n>Our results demonstrate that integrating geospatial information improves land cover mapping performance.
arXiv Detail & Related papers (2025-04-16T17:42:46Z) - MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data [0.0]
We present MESA - a novel data-centric alternative to procedural terrain modeling.<n>MESA generates high-quality terrain samples from text descriptions using global remote sensing data.<n>The model's capabilities are demonstrated through extensive experiments, highlighting its ability to generate realistic and diverse terrain landscapes.
arXiv Detail & Related papers (2025-04-09T18:37:24Z) - Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels [0.24966046892475396]
This study explores the Segment Anything Model (SAM) to delineate agricultural field boundaries in Bihar, India.
We evaluate SAM's performance across three model checkpoints, various input sizes, multi-date satellite images, and edge-enhanced imagery.
Using different input image sizes improves accuracy, with the most significant improvement observed when using multi-date satellite images.
arXiv Detail & Related papers (2024-07-01T23:06:02Z) - Multi-Region Transfer Learning for Segmentation of Crop Field Boundaries in Satellite Images with Limited Labels [6.79949280366368]
We present an approach for segmentation of crop field boundaries in satellite images in regions lacking labeled data.
We show that our approach outperforms existing methods and that multi-region transfer learning substantially boosts performance for multiple model architectures.
arXiv Detail & Related papers (2024-03-29T22:24:12Z) - R-MAE: Regions Meet Masked Autoencoders [113.73147144125385]
We explore regions as a potential visual analogue of words for self-supervised image representation learning.
Inspired by Masked Autoencoding (MAE), a generative pre-training baseline, we propose masked region autoencoding to learn from groups of pixels or regions.
arXiv Detail & Related papers (2023-06-08T17:56:46Z) - Knowledge Combination to Learn Rotated Detection Without Rotated
Annotation [53.439096583978504]
Rotated bounding boxes drastically reduce output ambiguity of elongated objects.
Despite the effectiveness, rotated detectors are not widely employed.
We propose a framework that allows the model to predict precise rotated boxes.
arXiv Detail & Related papers (2023-04-05T03:07:36Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
We evaluate a big data processing pipeline to auto-generate labels for remote sensing data.
We utilize the big geo-data platform IBM PAIRS to dynamically generate such labels in dense urban areas.
arXiv Detail & Related papers (2022-01-31T20:02:22Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
We propose an end-to-end system that learns to separate proposals into labeled and unlabeled regions using Pseudo-positive mining.
While the labeled regions are processed as usual, self-supervised learning is used to process the unlabeled regions.
We conduct exhaustive experiments on five splits on the PASCAL-VOC and COCO datasets achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-01-12T18:57:04Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z) - Weakly-supervised land classification for coastal zone based on deep convolutional neural networks by incorporating dual-polarimetric characteristics into training dataset [1.0494061710470493]
We explore the performance of DCNNs on semantic segmentation using spaceborne polarimetric synthetic aperture radar (PolSAR) datasets.
The semantic segmentation task using PolSAR data can be categorized as weakly supervised learning when the characteristics of SAR data and data annotating procedures are factored in.
Three DCNN models, including SegNet, U-Net, and LinkNet, are implemented next.
arXiv Detail & Related papers (2020-03-30T17:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.