Multi-Region Transfer Learning for Segmentation of Crop Field Boundaries in Satellite Images with Limited Labels
- URL: http://arxiv.org/abs/2404.00179v1
- Date: Fri, 29 Mar 2024 22:24:12 GMT
- Title: Multi-Region Transfer Learning for Segmentation of Crop Field Boundaries in Satellite Images with Limited Labels
- Authors: Hannah Kerner, Saketh Sundar, Mathan Satish,
- Abstract summary: We present an approach for segmentation of crop field boundaries in satellite images in regions lacking labeled data.
We show that our approach outperforms existing methods and that multi-region transfer learning substantially boosts performance for multiple model architectures.
- Score: 6.79949280366368
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The goal of field boundary delineation is to predict the polygonal boundaries and interiors of individual crop fields in overhead remotely sensed images (e.g., from satellites or drones). Automatic delineation of field boundaries is a necessary task for many real-world use cases in agriculture, such as estimating cultivated area in a region or predicting end-of-season yield in a field. Field boundary delineation can be framed as an instance segmentation problem, but presents unique research challenges compared to traditional computer vision datasets used for instance segmentation. The practical applicability of previous work is also limited by the assumption that a sufficiently-large labeled dataset is available where field boundary delineation models will be applied, which is not the reality for most regions (especially under-resourced regions such as Sub-Saharan Africa). We present an approach for segmentation of crop field boundaries in satellite images in regions lacking labeled data that uses multi-region transfer learning to adapt model weights for the target region. We show that our approach outperforms existing methods and that multi-region transfer learning substantially boosts performance for multiple model architectures. Our implementation and datasets are publicly available to enable use of the approach by end-users and serve as a benchmark for future work.
Related papers
- Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
Open-set single-source domain generalization aims to use a single-source domain to learn a robust model that can be generalized to unknown target domains.
We propose a novel learning approach based on domain expansion and boundary growth to expand the scarce source samples.
Our approach can achieve significant improvements and reach state-of-the-art performance on several cross-domain image classification datasets.
arXiv Detail & Related papers (2024-11-05T09:08:46Z) - Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels [0.24966046892475396]
This study explores the Segment Anything Model (SAM) to delineate agricultural field boundaries in Bihar, India.
We evaluate SAM's performance across three model checkpoints, various input sizes, multi-date satellite images, and edge-enhanced imagery.
Using different input image sizes improves accuracy, with the most significant improvement observed when using multi-date satellite images.
arXiv Detail & Related papers (2024-07-01T23:06:02Z) - Region-aware Distribution Contrast: A Novel Approach to Multi-Task Partially Supervised Learning [50.88504784466931]
Multi-task dense prediction involves semantic segmentation, depth estimation, and surface normal estimation.
Existing solutions typically rely on learning global image representations for global cross-task image matching.
Our proposal involves modeling region-wise representations using Gaussian Distributions.
arXiv Detail & Related papers (2024-03-15T12:41:30Z) - Cross Domain Early Crop Mapping using CropSTGAN [12.271756709807898]
This paper introduces the Crop Mapping Spectral-temporal Generative Adrial Neural Network (CropSTGAN)
CropSTGAN learns to transform the target domain's spectral features to those of the source domain, effectively bridging large dissimilarities.
In experiments, CropSTGAN is benchmarked against various state-of-the-art (SOTA) methods.
arXiv Detail & Related papers (2024-01-15T00:27:41Z) - R-MAE: Regions Meet Masked Autoencoders [113.73147144125385]
We explore regions as a potential visual analogue of words for self-supervised image representation learning.
Inspired by Masked Autoencoding (MAE), a generative pre-training baseline, we propose masked region autoencoding to learn from groups of pixels or regions.
arXiv Detail & Related papers (2023-06-08T17:56:46Z) - BI-GCN: Boundary-Aware Input-Dependent Graph Convolution Network for
Biomedical Image Segmentation [21.912509900254364]
We apply graph convolution into the segmentation task and propose an improved textitLaplacian.
Our method outperforms the state-of-the-art approaches on the segmentation of polyps in colonoscopy images and of the optic disc and optic cup in colour fundus images.
arXiv Detail & Related papers (2021-10-27T21:12:27Z) - Domain-Adversarial Training of Self-Attention Based Networks for Land
Cover Classification using Multi-temporal Sentinel-2 Satellite Imagery [0.0]
Most practical applications cannot rely on labeled data, and in the field, surveys are a time consuming solution.
In this paper, we investigate adversarial training of deep neural networks to bridge the domain discrepancy between distinct geographical zones.
arXiv Detail & Related papers (2021-04-01T15:45:17Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Weakly Supervised Domain Adaptation for Built-up Region Segmentation in
Aerial and Satellite Imagery [3.8508264614798517]
Built-up area estimation is an important component in understanding the human impact on the environment, the effect of public policy, and general urban population analysis.
The diverse nature of aerial and satellite imagery and lack of labeled data covering this diversity makes machine learning algorithms difficult to generalize.
This paper proposes a novel domain adaptation algorithm to handle the challenges posed by the satellite and aerial imagery.
arXiv Detail & Related papers (2020-07-05T10:05:01Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.