Watermarking Autoregressive Image Generation
- URL: http://arxiv.org/abs/2506.16349v1
- Date: Thu, 19 Jun 2025 14:25:51 GMT
- Title: Watermarking Autoregressive Image Generation
- Authors: Nikola Jovanović, Ismail Labiad, Tomáš Souček, Martin Vechev, Pierre Fernandez,
- Abstract summary: We present the first such approach by adapting language model watermarking techniques to this setting.<n>We identify a key challenge: the lack of reverse cycle-consistency.<n>We introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer.
- Score: 2.6394824904757943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values.
Related papers
- A Watermark for Auto-Regressive Image Generation Models [50.599325258178254]
We propose C-reweight, a distortion-free watermarking method explicitly designed for image generation models.<n>C-reweight mitigates retokenization mismatch while preserving image fidelity.
arXiv Detail & Related papers (2025-06-13T00:15:54Z) - Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models [50.73220224678009]
Watermarking can be used to verify the origin of synthetic images generated by artificial intelligence models.<n>Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial techniques.<n>In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery.<n>Our approach significantly broadens the scope of attacks, presenting a greater challenge to the security of current watermarking techniques.
arXiv Detail & Related papers (2025-06-06T12:08:02Z) - Training-Free Watermarking for Autoregressive Image Generation [24.86897985016275]
IndexMark is a training-free watermarking framework for autoregressive image generation models.<n>We show IndexMark achieves state-of-the-art performance in terms of image quality and verification accuracy.
arXiv Detail & Related papers (2025-05-20T17:58:02Z) - Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models [66.54457339638004]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.<n>We propose a diffusion model watermarking method tailored for real-world deployment.<n>Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness.
arXiv Detail & Related papers (2025-04-21T11:18:16Z) - SEAL: Semantic Aware Image Watermarking [26.606008778795193]
We propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark.<n>The key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing.<n>Our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
arXiv Detail & Related papers (2025-03-15T15:29:05Z) - Trigger-Based Fragile Model Watermarking for Image Transformation Networks [2.38776871944507]
In fragile watermarking, a sensitive watermark is embedded in an object in a manner such that the watermark breaks upon tampering.
We introduce a novel, trigger-based fragile model watermarking system for image transformation/generation networks.
Our approach, distinct from robust watermarking, effectively verifies the model's source and integrity across various datasets and attacks.
arXiv Detail & Related papers (2024-09-28T19:34:55Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARK is a first-of-its-kind watermarking technique that enhances robustness through contrastive learning.
Our evaluation reveals that JIGMARK significantly surpasses existing watermarking solutions in resilience to diffusion-model edits.
arXiv Detail & Related papers (2024-06-06T03:31:41Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - Wide Flat Minimum Watermarking for Robust Ownership Verification of GANs [23.639074918667625]
We propose a novel multi-bit box-free watermarking method for GANs with improved robustness against white-box attacks.
The watermark is embedded by adding an extra watermarking loss term during GAN training.
We show that the presence of the watermark has a negligible impact on the quality of the generated images.
arXiv Detail & Related papers (2023-10-25T18:38:10Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.