論文の概要: Can structural correspondences ground real world representational content in Large Language Models?
- arxiv url: http://arxiv.org/abs/2506.16370v1
- Date: Thu, 19 Jun 2025 14:48:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.120834
- Title: Can structural correspondences ground real world representational content in Large Language Models?
- Title(参考訳): 構造的対応は大規模言語モデルにおける実世界の表現的内容にできるか?
- Authors: Iwan Williams,
- Abstract要約: LLMと世界的実体の間の構造的対応の存在は、それらの実体の接地表現には不十分である、と私は論じる。
LLMのテキストバウンドネスは、適切なタスクへの関与を防ぐために、その面に現れます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) such as GPT-4 produce compelling responses to a wide range of prompts. But their representational capacities are uncertain. Many LLMs have no direct contact with extra-linguistic reality: their inputs, outputs and training data consist solely of text, raising the questions (1) can LLMs represent anything and (2) if so, what? In this paper, I explore what it would take to answer these questions according to a structural-correspondence based account of representation, and make an initial survey of this evidence. I argue that the mere existence of structural correspondences between LLMs and worldly entities is insufficient to ground representation of those entities. However, if these structural correspondences play an appropriate role - they are exploited in a way that explains successful task performance - then they could ground real world contents. This requires overcoming a challenge: the text-boundedness of LLMs appears, on the face of it, to prevent them engaging in the right sorts of tasks.
- Abstract(参考訳): GPT-4のような大規模言語モデル(LLM)は、幅広いプロンプトに対する説得力のある応答を生成する。
しかし、その表現能力は不確かである。
多くのLLMは、言語外現実と直接接触しない:その入力、アウトプット、トレーニングデータは、テキストから成り立っている。
本稿では, 構造的対応に基づく表現法に基づき, これらの疑問にどう答えるかを考察し, この証拠を最初に調査する。
LLMと世界的実体の間の構造的対応の存在は、それらの実体の接地表現には不十分である、と私は論じる。
しかし、もしこれらの構造的対応が適切な役割を果たすなら、それらはタスクのパフォーマンスをうまく説明する方法で利用されます。
LLMのテキストバウンドネスは、適切なタスクへの関与を防ぐために、その面に現れます。
関連論文リスト
- Structured Event Reasoning with Large Language Models [4.897267974042842]
現実の出来事に対する推論は、AIとNLPの統一的な課題である。
私は、エンド・ツー・エンドのLLMが複雑なイベントを体系的に推論できないことを示しています。
イベントの構造化表現と合わせてLLMを使用するための3つの一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-28T19:03:41Z) - LLMs' Understanding of Natural Language Revealed [0.0]
大規模言語モデル(LLM)は、大規模言語におけるボトムアップ、データ駆動のリバースエンジニアリングにおける大規模な実験の結果である。
私たちはLLMの言語理解能力、彼らが想定する砦をテストすることに重点を置きます。
論文 参考訳(メタデータ) (2024-07-29T01:21:11Z) - Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs [63.29737699997859]
大規模言語モデル(LLM)は、マルチモーダルな微調整をせずに、マルチモーダルなタスクにおいて印象的なパフォーマンスを示した。
本研究では,画像,ビデオ,音声,テキストの入力に凍結LDMを公開し,内部表現を解析する。
論文 参考訳(メタデータ) (2024-05-26T21:31:59Z) - What Evidence Do Language Models Find Convincing? [94.90663008214918]
議論の的になっているクエリと、さまざまな事実を含む実世界の証拠文書を組み合わせたデータセットを構築します。
このデータセットを用いて、感度と反ファクト分析を行い、どのテキスト特徴がLLM予測に最も影響するかを探索する。
全体として、現在のモデルは、クエリに対するWebサイトの関連性に大きく依存している一方で、人間が重要と考えるスタイル的特徴をほとんど無視している。
論文 参考訳(メタデータ) (2024-02-19T02:15:34Z) - Are Large Language Models Temporally Grounded? [38.481606493496514]
文章を記述したLarge Language Model (LLM) を提供する。
イベントの構造と持続時間に関する常識的な知識に関して、それらを調査する。
これらの能力を反映した3つの課題に対して,最先端のLCMを評価した。
論文 参考訳(メタデータ) (2023-11-14T18:57:15Z) - Question Answering as Programming for Solving Time-Sensitive Questions [84.07553016489769]
質問応答は、世界に関する知識の獲得に関わるため、人間の日常生活において重要な役割を担っている。
近年,Large Language Models (LLMs) は疑問に答える上で顕著な知性を示している。
これはLLMが表面レベルのテキストセマンティクスに基づいて厳密な推論を行うことができないためである。
我々は、$textbfQ$uestion $textbfA$rogrogeringタスクを再設定する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-23T16:35:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。