論文の概要: Classification of Cattle Behavior and Detection of Heat (Estrus) using Sensor Data
- arxiv url: http://arxiv.org/abs/2506.16380v1
- Date: Thu, 19 Jun 2025 15:00:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.123283
- Title: Classification of Cattle Behavior and Detection of Heat (Estrus) using Sensor Data
- Title(参考訳): センサデータを用いた牛の行動の分類と熱(エストロス)の検出
- Authors: Druva Dhakshinamoorthy, Avikshit Jha, Sabyasachi Majumdar, Devdulal Ghosh, Ranjita Chakraborty, Hena Ray,
- Abstract要約: 我々は、加速度計とジャイロセンサーを備えた安価なBluetoothベースの首首首輪を設計、展開し、実際の牛のリアルタイム行動データを収集した。
ラベル付きデータセットは、同期されたCCTV映像を使用して作成され、フィード、ルミネーション、嘘などの振る舞いに注釈を付ける。
実験では,93%以上の行動分類精度,96%のエストラス検出精度が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel system for monitoring cattle behavior and detecting estrus (heat) periods using sensor data and machine learning. We designed and deployed a low-cost Bluetooth-based neck collar equipped with accelerometer and gyroscope sensors to capture real-time behavioral data from real cows, which was synced to the cloud. A labeled dataset was created using synchronized CCTV footage to annotate behaviors such as feeding, rumination, lying, and others. We evaluated multiple machine learning models -- Support Vector Machines (SVM), Random Forests (RF), and Convolutional Neural Networks (CNN) -- for behavior classification. Additionally, we implemented a Long Short-Term Memory (LSTM) model for estrus detection using behavioral patterns and anomaly detection. Our system achieved over 93% behavior classification accuracy and 96% estrus detection accuracy on a limited test set. The approach offers a scalable and accessible solution for precision livestock monitoring, especially in resource-constrained environments.
- Abstract(参考訳): 本稿では、センサデータと機械学習を用いて、牛の行動を監視し、エストロス(熱)周期を検出する新しいシステムを提案する。
我々は、加速度計とジャイロセンサーを備えた低コストのBluetoothベースの首首首輪を設計、展開し、実際の牛の行動データをクラウドに同期させました。
ラベル付きデータセットは、同期されたCCTV映像を使用して作成され、フィード、ルミネーション、嘘などの振る舞いに注釈を付ける。
動作分類のために,複数の機械学習モデル – Support Vector Machines (SVM), Random Forests (RF), Convolutional Neural Networks (CNN) – を評価した。
さらに,行動パターンと異常検出を用いたエスラス検出のためのLong Short-Term Memory (LSTM)モデルを実装した。
実験では,93%以上の行動分類精度,96%のエストラス検出精度が得られた。
このアプローチは、特にリソース制約のある環境で、精度の高い家畜監視のためのスケーラブルでアクセス可能なソリューションを提供する。
関連論文リスト
- Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
本稿では,グラフ注意ネットワーク(GAT)とLong Short-Term Memory(LSTM)ネットワークを組み合わせた新しい手法を提案する。
このアプローチは、センサデータ内の空間的および時間的依存関係を捕捉し、軸受故障検出の精度を向上させる。
論文 参考訳(メタデータ) (2024-10-15T12:55:57Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - CODiT: Conformal Out-of-Distribution Detection in Time-Series Data [11.565104282674973]
多くの応用において、機械学習モデルへの入力は時間列を形成する。
共形異常検出フレームワークにおける非整合性尺度として,非分布時間同値からの偏差を用いる。
自律運転におけるコンピュータビジョンデータセットにおける最先端結果の達成によるCODiTの有効性について述べる。
論文 参考訳(メタデータ) (2022-07-24T16:41:14Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
乱雑なホームケージ環境下で各マウスにユニークな識別子を時間をかけて発見し提供することを目的としている。
これは、(i)各マウスの視覚的特徴の区別の欠如、(ii)一定の閉塞を伴うシーンの密閉性のため、非常に難しい問題である。
本手法は, この動物識別問題に対して77%の精度を達成し, 動物が隠れているときの急激な検出を拒否することができる。
論文 参考訳(メタデータ) (2021-12-13T17:11:32Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Deep Learning-based Cattle Activity Classification Using Joint
Time-frequency Data Representation [2.472770436480857]
本稿では,牛の行動・行動の分類と行動モデルの構築にシーケンシャルディープニューラルネットワークを用いた。
本研究の主な焦点は,センサデータの同時時間周波数領域表現の探索である。
3軸加速度計、磁力計、ジャイロスコープのセンサーから収集された300万以上のサンプルからなる実世界のデータセットに基づいています。
論文 参考訳(メタデータ) (2020-11-06T14:24:55Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
本稿では,身体のセンサデータから行動認識のための自己認識型ニューラルネットワークモデルを提案する。
一般に公開されている4つのHARデータセット、PAMAP2、Opportunity、Skoda、USC-HADについて実験を行った。
ベンチマークテスト対象とLeave-out-subject評価の両方において,最近の最先端モデルよりも高い性能向上を実現している。
論文 参考訳(メタデータ) (2020-03-17T14:16:57Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
本稿では,アザラシの捕食行動の同定に焦点をあてる。
考慮すべきデータは、アザラシに直接取り付けられたデバイスによって収集された3D加速度計と深度センサーのストリームである。
機械学習(ML)アルゴリズムに基づく自動モデルを提案する。
論文 参考訳(メタデータ) (2020-02-10T15:30:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。