EFormer: An Effective Edge-based Transformer for Vehicle Routing Problems
- URL: http://arxiv.org/abs/2506.16428v1
- Date: Thu, 19 Jun 2025 16:07:11 GMT
- Title: EFormer: An Effective Edge-based Transformer for Vehicle Routing Problems
- Authors: Dian Meng, Zhiguang Cao, Yaoxin Wu, Yaqing Hou, Hongwei Ge, Qiang Zhang,
- Abstract summary: We introduce EFormer, an Edge-based Transformer model that uses edge as the sole input for VRPs.<n>Our approach employs a precoder module with a mixed-score attention mechanism to convert edge information into temporary node embeddings.<n>EFormer outperforms established baselines on synthetic datasets.
- Score: 25.234292937274212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent neural heuristics for the Vehicle Routing Problem (VRP) primarily rely on node coordinates as input, which may be less effective in practical scenarios where real cost metrics-such as edge-based distances-are more relevant. To address this limitation, we introduce EFormer, an Edge-based Transformer model that uses edge as the sole input for VRPs. Our approach employs a precoder module with a mixed-score attention mechanism to convert edge information into temporary node embeddings. We also present a parallel encoding strategy characterized by a graph encoder and a node encoder, each responsible for processing graph and node embeddings in distinct feature spaces, respectively. This design yields a more comprehensive representation of the global relationships among edges. In the decoding phase, parallel context embedding and multi-query integration are used to compute separate attention mechanisms over the two encoded embeddings, facilitating efficient path construction. We train EFormer using reinforcement learning in an autoregressive manner. Extensive experiments on the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) reveal that EFormer outperforms established baselines on synthetic datasets, including large-scale and diverse distributions. Moreover, EFormer demonstrates strong generalization on real-world instances from TSPLib and CVRPLib. These findings confirm the effectiveness of EFormer's core design in solving VRPs.
Related papers
- GITO: Graph-Informed Transformer Operator for Learning Complex Partial Differential Equations [0.0]
We present a novel graph-informed transformer operator (GITO) architecture for learning complex partial differential equation systems.<n>GITO consists of two main modules: a hybrid graph transformer (HGT) and a transformer neural operator (TNO)<n> Empirical results on benchmark PDE tasks demonstrate that GITO outperforms existing transformer-based neural operators.
arXiv Detail & Related papers (2025-06-16T18:35:45Z) - Neural Combinatorial Optimization for Real-World Routing [15.136899433821894]
Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous in several real-world logistics scenarios.<n>NCO has emerged as a promising alternative to classical approaches to solve VRPs.<n>This work introduces RRNCO (Real Routing NCO) to bridge the gap of NCO between synthetic and real-world VRPs.
arXiv Detail & Related papers (2025-03-20T13:57:33Z) - CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
We propose a new detextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) mechanism.
We first propose an asymmetrical feature decoupling strategy that asymmetrically decouples the learning process for local inductive bias and long-range dependencies.
By adopting a decoupled learning way and fully exploiting complementarity across features, our method can achieve both high efficiency and accuracy.
arXiv Detail & Related papers (2024-11-25T07:56:13Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
We propose an adaptive Graph Attention Sampling with the Edges Fusion framework to solve vehicle routing problems.
Our proposed model outperforms the existing methods by 2.08%-6.23% and shows stronger generalization ability.
arXiv Detail & Related papers (2024-05-21T03:33:07Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Pointerformer: Deep Reinforced Multi-Pointer Transformer for the
Traveling Salesman Problem [67.32731657297377]
Traveling Salesman Problem (TSP) is a classic routing optimization problem originally arising in the domain of transportation and logistics.
Recently, Deep Reinforcement Learning has been increasingly employed to solve TSP due to its high inference efficiency.
We propose a novel end-to-end DRL approach, referred to as Pointerformer, based on multi-pointer Transformer.
arXiv Detail & Related papers (2023-04-19T03:48:32Z) - LENet: Lightweight And Efficient LiDAR Semantic Segmentation Using
Multi-Scale Convolution Attention [0.0]
We propose a projection-based semantic segmentation network called LENet with an encoder-decoder structure for LiDAR-based semantic segmentation.
The encoder is composed of a novel multi-scale convolutional attention (MSCA) module with varying receptive field sizes to capture features.
We show that our proposed method is lighter, more efficient, and robust compared to state-of-the-art semantic segmentation methods.
arXiv Detail & Related papers (2023-01-11T02:51:38Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Learning to Iteratively Solve Routing Problems with Dual-Aspect
Collaborative Transformer [14.680514752270375]
This paper presents a novel Dual-Aspect Collaborative Transformer (DACT) to learn embeddings for the node and positional features separately.
The positional features are embedded through a novel cyclic positional encoding (CPE) method to allow Transformer to effectively capture the circularity and symmetry of VRP solutions.
arXiv Detail & Related papers (2021-10-06T07:21:41Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.