Neutrino Telescope Event Classification on Quantum Computers
- URL: http://arxiv.org/abs/2506.16530v1
- Date: Thu, 19 Jun 2025 18:22:29 GMT
- Title: Neutrino Telescope Event Classification on Quantum Computers
- Authors: Pablo Rodriguez-Grasa, Pavel Zhelnin, Carlos A. Argüelles, Mikel Sanz,
- Abstract summary: We present the first study exploring how current quantum computers can be used to classify different neutrino event types observed in neutrino telescopes.<n>We investigate two quantum machine learning approaches, Neural Projected Quantum Kernels (NPQKs) and Quantum Convolutional Neural Networks (QCNNs)<n>We find that both achieve classification performance comparable to classical machine learning methods across a wide energy range.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers represent a new computational paradigm with steadily improving hardware capabilities. In this article, we present the first study exploring how current quantum computers can be used to classify different neutrino event types observed in neutrino telescopes. We investigate two quantum machine learning approaches, Neural Projected Quantum Kernels (NPQKs) and Quantum Convolutional Neural Networks (QCNNs), and find that both achieve classification performance comparable to classical machine learning methods across a wide energy range. By introducing a moment-of-inertia-based encoding scheme and a novel preprocessing approach, we enable efficient and scalable learning with large neutrino astronomy datasets. Tested on both simulators and the IBM Strasbourg quantum processor, the NPQK achieves a testing accuracy near 80 percent, with robust results above 1 TeV and close agreement between simulation and hardware performance. A simulated QCNN achieves approximately a 70 percent accuracy over the same energy range. These results underscore the promise of quantum machine learning for neutrino astronomy, paving the way for future advances as quantum hardware matures.
Related papers
- Training Hybrid Deep Quantum Neural Network for Efficient Reinforcement Learning [2.2978333459052815]
Quantum circuits embed data in a Hilbert space whose dimensionality grows exponentially with the number of qubits.<n>We introduce qtDNN, a tangential surrogate that locally approximates a quantum circuit.<n>We design hDQNN-TD3, a hybrid deep quantum neural network for continuous-control reinforcement learning.
arXiv Detail & Related papers (2025-03-12T07:12:02Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
In this work, we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on BAQIS Quafu quantum computing cloud.
The experimental results demonstrate that the Reinforcement Learning (RL) agents are capable of achieving goals that are slightly relaxed both during the training and inference stages.
arXiv Detail & Related papers (2023-05-29T09:13:50Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - QuantumSkynet: A High-Dimensional Quantum Computing Simulator [0.0]
Current implementations of quantum computing simulators are limited to two-level quantum systems.
Recent advances in high-dimensional quantum computing systems have demonstrated the viability of working with multi-level superposition and entanglement.
We introduce QuantumSkynet, a novel high-dimensional cloud-based quantum computing simulator.
arXiv Detail & Related papers (2021-06-30T06:28:18Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum Support Vector Machines for Continuum Suppression in B Meson
Decays [0.27342795342528275]
We investigate the effect of different quantum encoding circuits, the process that transforms classical data into a quantum state, on the final classification performance.
We show an encoding approach that achieves an average Area Under Receiver Operating Characteristic Curve (AUC) of 0.848 determined using quantum circuit simulations.
Using a reduced version of the dataset we then ran the algorithm on the IBM Quantum ibmq_casablanca device achieving an average AUC of 0.703.
arXiv Detail & Related papers (2021-03-23T02:09:05Z) - QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum
State Fidelity [13.152233840194473]
We propose a novel architecture QuClassi, a quantum neural network for both binary and multi-class classification.
Powered by a quantum differentiation function along with a hybrid quantum-classic design, QuClassi encodes the data with a reduced number of qubits and generates the quantum circuit, pushing it to the quantum platform for the best states.
arXiv Detail & Related papers (2021-03-21T05:28:37Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.