Theory of multi-qubit superradiance in a waveguide in the presence of finite delay times
- URL: http://arxiv.org/abs/2506.16605v1
- Date: Thu, 19 Jun 2025 21:09:15 GMT
- Title: Theory of multi-qubit superradiance in a waveguide in the presence of finite delay times
- Authors: Sofia Arranz Regidor, Franco Nori, Stephen Hughes,
- Abstract summary: We study the quantum dynamics of multiple two-level atoms (qubits) in a waveguide quantum electrodynamics system.<n>We highlight the significant influence of time-delayed feedback effects and the clear breakdown of assuming instantaneous coupling dynamics.
- Score: 0.5852077003870417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the quantum dynamics of multiple two-level atoms (qubits) in a waveguide quantum electrodynamics system, with a focus on modified superradiance effects between two or four atoms with finite delay times. Using a numerically exact matrix product approach, we explore both Markovian and non-Markovian regimes, and highlight the significant influence of time-delayed feedback effects and the clear breakdown of assuming instantaneous coupling dynamics. We first show a system composed of two spatially separated qubits, prepared in a doubly excited state (both fully excited), and provide a comprehensive study of how delayed feedback influences the collective system decay rates, as well as the quantum correlations between waveguide photons, atoms, and between atom and photons. The system is then extended to include two additional qubits located next to the initial ones (four qubits in total), and we demonstrate, by manipulating the initial excitations and the time-delay effects, how long-term quantum correlations and light-matter entangled states can be established.
Related papers
- Tripartite Entanglement in Multimode Cavity Quantum Electrodynamics [37.69303106863453]
We numerically investigate the generation and dynamics of tripartite entanglement among qubits in multimode cavity quantum electrodynamics.<n>Our results hold promise for the development of entanglement-based quantum networking protocols and quantum memories.
arXiv Detail & Related papers (2025-07-16T03:53:14Z) - Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Delay-induced spontaneous dark state generation from two distant excited atoms [0.0]
We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay.
Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters.
arXiv Detail & Related papers (2023-03-12T03:50:07Z) - Non-Markovian disentanglement dynamics in double-giant-atom
waveguide-QED systems [0.0]
We study the disentanglement dynamics of two giant atoms coupled to a common one-dimensional waveguide.
We find that the retardation-induced non-Markovianity leads to non-exponential decay and revivals of entanglement.
This work will pave the way for the generation of stationary entanglement between two giant atoms.
arXiv Detail & Related papers (2022-06-19T15:44:29Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Enhancement of spontaneous entanglement generation via coherent quantum
feedback [1.9664223844337747]
We investigate the entanglement dynamics of two two-level emitters (qubits) mediated by a semiinfinite, one-dimensional (1D) photonic waveguide.
We show that the chirally generated entanglement between the qubits can be preserved by controlling the time delay of the feedback.
arXiv Detail & Related papers (2020-03-04T16:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.