FlatCAD: Fast Curvature Regularization of Neural SDFs for CAD Models
- URL: http://arxiv.org/abs/2506.16627v1
- Date: Thu, 19 Jun 2025 21:54:08 GMT
- Title: FlatCAD: Fast Curvature Regularization of Neural SDFs for CAD Models
- Authors: Haotian Yin, Aleksander Plocharski, Michal Jan Wlodarczyk, Mikolaj Kida, Przemyslaw Musialski,
- Abstract summary: We present a curvature proxy that regularizes only the mixed second-order term.<n>Because the method is drop-in and framework-agnostic, it opens a practical path toward scalable, curvature-aware SDF learning.
- Score: 41.13351630648502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural signed-distance fields (SDFs) have become a versatile backbone for geometric learning, yet enforcing developable, CAD-style behavior still hinges on Gaussian curvature penalties that require full Hessian evaluation and second-order automatic differentiation, both of which are costly in memory and runtime. We present a curvature proxy that regularizes only the mixed second-order term (Weingarten term), allowing the two principal curvatures to adapt freely to data while suppressing unwanted warp. Two complementary instantiations realize this idea: (i) a finite-difference proxy that replaces each Hessian entry with four forward SDF evaluations and a single first-order gradient, and (ii) an autodiff proxy that computes the same mixed derivative via one Hessian-vector product, sidestepping explicit full Hessian assembly and remaining faster in practice. Both variants converge to the exact mixed second derivative, thus preserving the intended geometric bias without incurring full second-order graphs. On the ABC benchmarks, the proxies match or exceed the reconstruction fidelity of Hessian-based baselines while reducing GPU memory use and wall-clock time by a factor of two. Because the method is drop-in and framework-agnostic, it opens a practical path toward scalable, curvature-aware SDF learning for engineering-grade shape reconstruction.
Related papers
- Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction [14.628742412460346]
This paper presents an end-to-end framework for reconstructing 3D parametric curves directly from multi-view edge maps.<n>We propose a novel bi-directional coupling mechanism between parametric curves and edge-oriented Gaussian components.<n>Our method significantly reduces the parameter count during training, achieving both higher efficiency and superior performance compared to existing approaches.
arXiv Detail & Related papers (2025-06-26T15:48:08Z) - Enabling Automatic Differentiation with Mollified Graph Neural Operators [75.3183193262225]
We propose the mollified graph neural operator (mGNO), the first method to leverage automatic differentiation and compute emphexact gradients on arbitrary geometries.<n>For a PDE example on regular grids, mGNO paired with autograd reduced the L2 relative data error by 20x compared to finite differences.<n>It can also solve PDEs on unstructured point clouds seamlessly, using physics losses only, at resolutions vastly lower than those needed for finite differences to be accurate enough.
arXiv Detail & Related papers (2025-04-11T06:16:30Z) - Global $\mathcal{L}^2$ minimization at uniform exponential rate via geometrically adapted gradient descent in Deep Learning [1.4050802766699084]
We consider the scenario of supervised learning in Deep Learning (DL) networks.<n>We choose the gradient flow with respect to the Euclidean metric in the output layer of the DL network.
arXiv Detail & Related papers (2023-11-27T02:12:02Z) - Deep Declarative Dynamic Time Warping for End-to-End Learning of
Alignment Paths [54.53208538517505]
This paper addresses learning end-to-end models for time series data that include a temporal alignment step via dynamic time warping (DTW)
We propose a DTW layer based around bi-level optimisation and deep declarative networks, which we name DecDTW.
We show that this property is particularly useful for applications where downstream loss functions are defined on the optimal alignment path itself.
arXiv Detail & Related papers (2023-03-19T21:58:37Z) - Reconstructing editable prismatic CAD from rounded voxel models [16.03976415868563]
We introduce a novel neural network architecture to solve this challenging task.
Our method reconstructs the input geometry in the voxel space by decomposing the shape.
During inference, we obtain the CAD data by first searching a database of 2D constrained sketches.
arXiv Detail & Related papers (2022-09-02T16:44:10Z) - Error-Correcting Neural Networks for Two-Dimensional Curvature
Computation in the Level-Set Method [0.0]
We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method.
Our main contribution is a redesigned hybrid solver that relies on numerical schemes to enable machine-learning operations on demand.
arXiv Detail & Related papers (2022-01-22T05:14:40Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Implicit Bias of Gradient Descent for Mean Squared Error Regression with
Two-Layer Wide Neural Networks [1.3706331473063877]
We show that the solution of training a width-$n$ shallow ReLU network is within $n- 1/2$ of the function which fits the training data.
We also show that the training trajectories are captured by trajectories of smoothing splines with decreasing regularization strength.
arXiv Detail & Related papers (2020-06-12T17:46:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.