Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction
- URL: http://arxiv.org/abs/2506.21401v3
- Date: Tue, 22 Jul 2025 16:42:46 GMT
- Title: Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction
- Authors: Zhirui Gao, Renjiao Yi, Yaqiao Dai, Xuening Zhu, Wei Chen, Chenyang Zhu, Kai Xu,
- Abstract summary: This paper presents an end-to-end framework for reconstructing 3D parametric curves directly from multi-view edge maps.<n>We propose a novel bi-directional coupling mechanism between parametric curves and edge-oriented Gaussian components.<n>Our method significantly reduces the parameter count during training, achieving both higher efficiency and superior performance compared to existing approaches.
- Score: 14.628742412460346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents an end-to-end framework for reconstructing 3D parametric curves directly from multi-view edge maps. Contrasting with existing two-stage methods that follow a sequential ``edge point cloud reconstruction and parametric curve fitting'' pipeline, our one-stage approach optimizes 3D parametric curves directly from 2D edge maps, eliminating error accumulation caused by the inherent optimization gap between disconnected stages. However, parametric curves inherently lack suitability for rendering-based multi-view optimization, necessitating a complementary representation that preserves their geometric properties while enabling differentiable rendering. We propose a novel bi-directional coupling mechanism between parametric curves and edge-oriented Gaussian components. This tight correspondence formulates a curve-aware Gaussian representation, \textbf{CurveGaussian}, that enables differentiable rendering of 3D curves, allowing direct optimization guided by multi-view evidence. Furthermore, we introduce a dynamically adaptive topology optimization framework during training to refine curve structures through linearization, merging, splitting, and pruning operations. Comprehensive evaluations on the ABC dataset and real-world benchmarks demonstrate our one-stage method's superiority over two-stage alternatives, particularly in producing cleaner and more robust reconstructions. Additionally, by directly optimizing parametric curves, our method significantly reduces the parameter count during training, achieving both higher efficiency and superior performance compared to existing approaches.
Related papers
- RiemanLine: Riemannian Manifold Representation of 3D Lines for Factor Graph Optimization [49.83974390433746]
This paper introduces textbfRiemanLine, a unified minimal representation for 3D lines.<n>Our key idea is to decouple each line landmark into global and local components.<n>Experiments on ICL-NUIM, TartanAir, and synthetic benchmarks demonstrate that our method achieves significantly more accurate pose estimation and line reconstruction.
arXiv Detail & Related papers (2025-08-06T11:27:38Z) - 3-Dimensional CryoEM Pose Estimation and Shift Correction Pipeline [2.009945677846956]
Accurate pose estimation and shift correction are key challenges in cryo-EM due to the very low SNR, which directly impacts the fidelity of 3D reconstructions.<n>We present an approach for pose estimation in cryo-EM that leverages multi-dimensional scaling (MDS) techniques in a robust manner to estimate the 3D rotation matrix of each particle from pairs of dihedral angles.
arXiv Detail & Related papers (2025-07-20T11:46:17Z) - Bridging Geometry-Coherent Text-to-3D Generation with Multi-View Diffusion Priors and Gaussian Splatting [51.08718483081347]
We propose a framework that couples multi-view joint distribution priors to ensure geometrically consistent 3D generation.<n>We derive an effective optimization rule that effectively couples multi-view priors to guide optimization across different viewpoints.<n>We employ a deformable tetrahedral grid, from 3D-GS and refined through CSD, to produce high-quality, refined meshes.
arXiv Detail & Related papers (2025-05-07T09:12:45Z) - CLR-Wire: Towards Continuous Latent Representations for 3D Curve Wireframe Generation [11.447223770747051]
CLR ContinuousWire encodes curves as Parametric Curves along with their Parametric Curves into a continuous and fixed latent space.<n>This unified approach generates both geometry and topology.
arXiv Detail & Related papers (2025-04-27T09:32:42Z) - Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting [0.3749861135832072]
This work implements an adaptive densification strategy that dynamically refines regions with high image gradients.<n>It results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency.
arXiv Detail & Related papers (2025-04-08T07:15:58Z) - LinPrim: Linear Primitives for Differentiable Volumetric Rendering [53.780682194322225]
We introduce two new scene representations based on linear primitives.<n>We present a different octaiableizer that runs efficiently on GPU.<n>We demonstrate comparable performance to state-of-the-art methods.
arXiv Detail & Related papers (2025-01-27T18:49:38Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field.
We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives.
arXiv Detail & Related papers (2023-08-10T06:40:19Z) - Error-Correcting Neural Networks for Two-Dimensional Curvature
Computation in the Level-Set Method [0.0]
We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method.
Our main contribution is a redesigned hybrid solver that relies on numerical schemes to enable machine-learning operations on demand.
arXiv Detail & Related papers (2022-01-22T05:14:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.