Overfitting in Histopathology Model Training: The Need for Customized Architectures
- URL: http://arxiv.org/abs/2506.16631v1
- Date: Thu, 19 Jun 2025 22:05:54 GMT
- Title: Overfitting in Histopathology Model Training: The Need for Customized Architectures
- Authors: Saghir Alfasly, Ghazal Alabtah, H. R. Tizhoosh,
- Abstract summary: We show that fine-tuning large-scale models for image analysis leads to suboptimal performance and significant overfitting when applied to histopathology tasks.<n>Our findings emphasize the need for customized architectures specifically designed for histopathology image analysis.
- Score: 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the critical problem of overfitting in deep learning models applied to histopathology image analysis. We show that simply adopting and fine-tuning large-scale models designed for natural image analysis often leads to suboptimal performance and significant overfitting when applied to histopathology tasks. Through extensive experiments with various model architectures, including ResNet variants and Vision Transformers (ViT), we show that increasing model capacity does not necessarily improve performance on histopathology datasets. Our findings emphasize the need for customized architectures specifically designed for histopathology image analysis, particularly when working with limited datasets. Using Oesophageal Adenocarcinomas public dataset, we demonstrate that simpler, domain-specific architectures can achieve comparable or better performance while minimizing overfitting.
Related papers
- Semantic Segmentation of iPS Cells: Case Study on Model Complexity in Biomedical Imaging [0.0]
We show that a carefully configured DeepLabv3 model can achieve high performance in segmenting induced pluripotent stem (iPS) cell colonies.<n>We also offer an open-source implementation that includes strategies for small datasets and domain-specific encoding.
arXiv Detail & Related papers (2025-07-29T09:05:01Z) - Investigating Zero-Shot Diagnostic Pathology in Vision-Language Models with Efficient Prompt Design [7.509731425152396]
We present a systematic investigation and analysis of three state of the art vision-language models (VLMs) for histopathology.<n>We develop a comprehensive prompt engineering framework that systematically varies domain specificity, anatomical precision, instructional framing, and output constraints.<n>Our findings demonstrate that prompt engineering significantly impacts model performance, with the CONCH model achieving the highest accuracy when provided with precise anatomical references.
arXiv Detail & Related papers (2025-04-30T19:01:06Z) - A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.<n>We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)<n>We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
This paper systematically analyzes the impact of different design choices on deep-learning-based weather forecasting systems.
We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models.
We propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures.
arXiv Detail & Related papers (2024-10-09T22:25:50Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
Histopathology image classification is crucial for the accurate identification and diagnosis of various diseases.
We show that synthetic images can effectively augment existing datasets, ultimately improving the performance of the downstream histopathology image classification task.
arXiv Detail & Related papers (2024-09-24T12:02:55Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
We train and evaluate five published models on the publicly available FIVES fundus image dataset.
We find that image quality is a key factor determining segmentation outcomes.
arXiv Detail & Related papers (2024-06-21T09:12:34Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - Performance Analysis of UNet and Variants for Medical Image Segmentation [1.5410557873153836]
This study aims to explore the application of deep learning models, particularly focusing on the UNet architecture and its variants, in medical image segmentation.
The findings reveal that the standard UNet, when extended with a deep network layer, is a proficient medical image segmentation model.
The Res-UNet and Attention Res-UNet architectures demonstrate smoother convergence and superior performance, particularly when handling fine image details.
arXiv Detail & Related papers (2023-09-22T17:20:40Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.